You work for an online grocery store. You recently developed a custom ML model that recommends a recipe when a user arrives at the website. You chose the machine type on the Vertex Al endpoint to optimize costs by using the queries per second (QPS) that the model can serve, and you deployed it on a single machine with 8 vCPUs and no accelerators.
A holiday season is approaching and you anticipate four times more traffic during this time than the typical daily traffic You need to ensure that the model can scale efficiently to the increased demand. What should you do?
You are developing models to classify customer support emails. You created models with TensorFlow Estimators using small datasets on your on-premises system, but you now need to train the models using large datasets to ensure high performance. You will port your models to Google Cloud and want to minimize code refactoring and infrastructure overhead for easier migration from on-prem to cloud. What should you do?
Your team needs to build a model that predicts whether images contain a driver's license, passport, or credit card. The data engineering team already built the pipeline and generated a dataset composed of 10,000 images with driver's licenses, 1,000 images with passports, and 1,000 images with credit cards. You now have to train a model with the following label map: ['driversjicense', 'passport', 'credit_card']. Which loss function should you use?
You are training and deploying updated versions of a regression model with tabular data by using Vertex Al Pipelines. Vertex Al Training Vertex Al Experiments and Vertex Al Endpoints. The model is deployed in a Vertex Al endpoint and your users call the model by using the Vertex Al endpoint. You want to receive an email when the feature data distribution changes significantly, so you can retrigger the training pipeline and deploy an updated version of your model What should you do?
You have recently used TensorFlow to train a classification model on tabular data You have created a Dataflow pipeline that can transform several terabytes of data into training or prediction datasets consisting of TFRecords. You now need to productionize the model, and you want the predictions to be automatically uploaded to a BigQuery table on a weekly schedule. What should you do?
You have a functioning end-to-end ML pipeline that involves tuning the hyperparameters of your ML model using Al Platform, and then using the best-tuned parameters for training. Hypertuning is taking longer than expected and is delaying the downstream processes. You want to speed up the tuning job without significantly compromising its effectiveness. Which actions should you take?
Choose 2 answers
You work for a large retailer and you need to build a model to predict customer churn. The company has a dataset of historical customer data, including customer demographics, purchase history, and website activity. You need to create the model in BigQuery ML and thoroughly evaluate its performance. What should you do?
You need to train a computer vision model that predicts the type of government ID present in a given image using a GPU-powered virtual machine on Compute Engine. You use the following parameters:
• Optimizer: SGD
• Image shape = 224x224
• Batch size = 64
• Epochs = 10
• Verbose = 2
During training you encounter the following error: ResourceExhaustedError: out of Memory (oom) when allocating tensor. What should you do?
Your team frequently creates new ML models and runs experiments. Your team pushes code to a single repository hosted on Cloud Source Repositories. You want to create a continuous integration pipeline that automatically retrains the models whenever there is any modification of the code. What should be your first step to set up the CI pipeline?
You are responsible for building a unified analytics environment across a variety of on-premises data marts. Your company is experiencing data quality and security challenges when integrating data across the servers, caused by the use of a wide range of disconnected tools and temporary solutions. You need a fully managed, cloud-native data integration service that will lower the total cost of work and reduce repetitive work. Some members on your team prefer a codeless interface for building Extract, Transform, Load (ETL) process. Which service should you use?
You are experimenting with a built-in distributed XGBoost model in Vertex AI Workbench user-managed notebooks. You use BigQuery to split your data into training and validation sets using the following queries:
CREATE OR REPLACE TABLE ‘myproject.mydataset.training‘ AS
(SELECT * FROM ‘myproject.mydataset.mytable‘ WHERE RAND() <= 0.8);
CREATE OR REPLACE TABLE ‘myproject.mydataset.validation‘ AS
(SELECT * FROM ‘myproject.mydataset.mytable‘ WHERE RAND() <= 0.2);
After training the model, you achieve an area under the receiver operating characteristic curve (AUC ROC) value of 0.8, but after deploying the model to production, you notice that your model performance has dropped to an AUC ROC value of 0.65. What problem is most likely occurring?
Your team is building an application for a global bank that will be used by millions of customers. You built a forecasting model that predicts customers1 account balances 3 days in the future. Your team will use the results in a new feature that will notify users when their account balance is likely to drop below $25. How should you serve your predictions?
You are an ML engineer at a global car manufacturer. You need to build an ML model to predict car sales in different cities around the world. Which features or feature crosses should you use to train city-specific relationships between car type and number of sales?
You are developing a Kubeflow pipeline on Google Kubernetes Engine. The first step in the pipeline is to issue a query against BigQuery. You plan to use the results of that query as the input to the next step in your pipeline. You want to achieve this in the easiest way possible. What should you do?
You developed a BigQuery ML linear regressor model by using a training dataset stored in a BigQuery table. New data is added to the table every minute. You are using Cloud Scheduler and Vertex Al Pipelines to automate hourly model training, and use the model for direct inference. The feature preprocessing logic includes quantile bucketization and MinMax scaling on data received in the last hour. You want to minimize storage and computational overhead. What should you do?
You are going to train a DNN regression model with Keras APIs using this code:
How many trainable weights does your model have? (The arithmetic below is correct.)
You work for a toy manufacturer that has been experiencing a large increase in demand. You need to build an ML model to reduce the amount of time spent by quality control inspectors checking for product defects. Faster defect detection is a priority. The factory does not have reliable Wi-Fi. Your company wants to implement the new ML model as soon as possible. Which model should you use?
You are training an ML model using data stored in BigQuery that contains several values that are considered Personally Identifiable Information (Pll). You need to reduce the sensitivity of the dataset before training your model. Every column is critical to your model. How should you proceed?
You need to design an architecture that serves asynchronous predictions to determine whether a particular mission-critical machine part will fail. Your system collects data from multiple sensors from the machine. You want to build a model that will predict a failure in the next N minutes, given the average of each sensor’s data from the past 12 hours. How should you design the architecture?
You work with a team of researchers to develop state-of-the-art algorithms for financial analysis. Your team develops and debugs complex models in TensorFlow. You want to maintain the ease of debugging while also reducing the model training time. How should you set up your training environment?
You work for a company that captures live video footage of checkout areas in their retail stores You need to use the live video footage to build a mode! to detect the number of customers waiting for service in near real time You want to implement a solution quickly and with minimal effort How should you build the model?
You are an ML engineer at a manufacturing company You are creating a classification model for a predictive maintenance use case You need to predict whether a crucial machine will fail in the next three days so that the repair crew has enough time to fix the machine before it breaks. Regular maintenance of the machine is relatively inexpensive, but a failure would be very costly You have trained several binary classifiers to predict whether the machine will fail. where a prediction of 1 means that the ML model predicts a failure.
You are now evaluating each model on an evaluation dataset. You want to choose a model that prioritizes detection while ensuring that more than 50% of the maintenance jobs triggered by your model address an imminent machine failure. Which model should you choose?
You recently deployed a scikit-learn model to a Vertex Al endpoint You are now testing the model on live production traffic While monitoring the endpoint. you discover twice as many requests per hour than expected throughout the day You want the endpoint to efficiently scale when the demand increases in the future to prevent users from experiencing high latency What should you do?
Your data science team is training a PyTorch model for image classification based on a pre-trained RestNet model. You need to perform hyperparameter tuning to optimize for several parameters. What should you do?
Your team is training a large number of ML models that use different algorithms, parameters and datasets. Some models are trained in Vertex Ai Pipelines, and some are trained on Vertex Al Workbench notebook instances. Your team wants to compare the performance of the models across both services. You want to minimize the effort required to store the parameters and metrics What should you do?
You need to develop a custom TensorRow model that will be used for online predictions. The training data is stored in BigQuery. You need to apply instance-level data transformations to the data for model training and serving. You want to use the same preprocessing routine during model training and serving. How should you configure the preprocessing routine?
You work for a large social network service provider whose users post articles and discuss news. Millions of comments are posted online each day, and more than 200 human moderators constantly review comments and flag those that are inappropriate. Your team is building an ML model to help human moderators check content on the platform. The model scores each comment and flags suspicious comments to be reviewed by a human. Which metric(s) should you use to monitor the model’s performance?
You have recently trained a scikit-learn model that you plan to deploy on Vertex Al. This model will support both online and batch prediction. You need to preprocess input data for model inference. You want to package the model for deployment while minimizing additional code What should you do?
You are designing an architecture with a serverless ML system to enrich customer support tickets with informative metadata before they are routed to a support agent. You need a set of models to predict ticket priority, predict ticket resolution time, and perform sentiment analysis to help agents make strategic decisions when they process support requests. Tickets are not expected to have any domain-specific terms or jargon.
The proposed architecture has the following flow:
Which endpoints should the Enrichment Cloud Functions call?
You have been tasked with deploying prototype code to production. The feature engineering code is in PySpark and runs on Dataproc Serverless. The model training is executed by using a Vertex Al custom training job. The two steps are not connected, and the model training must currently be run manually after the feature engineering step finishes. You need to create a scalable and maintainable production process that runs end-to-end and tracks the connections between steps. What should you do?
You are the Director of Data Science at a large company, and your Data Science team has recently begun using the Kubeflow Pipelines SDK to orchestrate their training pipelines. Your team is struggling to integrate their custom Python code into the Kubeflow Pipelines SDK. How should you instruct them to proceed in order to quickly integrate their code with the Kubeflow Pipelines SDK?
You trained a model on data stored in a Cloud Storage bucket. The model needs to be retrained frequently in Vertex AI Training using the latest data in the bucket. Data preprocessing is required prior to retraining. You want to build a simple and efficient near-real-time ML pipeline in Vertex AI that will preprocess the data when new data arrives in the bucket. What should you do?
You work with a data engineering team that has developed a pipeline to clean your dataset and save it in a Cloud Storage bucket. You have created an ML model and want to use the data to refresh your model as soon as new data is available. As part of your CI/CD workflow, you want to automatically run a Kubeflow Pipelines training job on Google Kubernetes Engine (GKE). How should you architect this workflow?
You are an AI engineer working for a popular video streaming platform. You built a classification model using PyTorch to predict customer churn. Each week, the customer retention team plans to contact customers identified as at-risk for churning with personalized offers. You want to deploy the model while minimizing maintenance effort. What should you do?
You built a custom ML model using scikit-learn. Training time is taking longer than expected. You decide to migrate your model to Vertex AI Training, and you want to improve the model’s training time. What should you try out first?
You are using Kubeflow Pipelines to develop an end-to-end PyTorch-based MLOps pipeline. The pipeline reads data from BigQuery,
processes the data, conducts feature engineering, model training, model evaluation, and deploys the model as a binary file to Cloud Storage. You are
writing code for several different versions of the feature engineering and model training steps, and running each new version in Vertex Al Pipelines.
Each pipeline run is taking over an hour to complete. You want to speed up the pipeline execution to reduce your development time, and you want to
avoid additional costs. What should you do?
You work for a global footwear retailer and need to predict when an item will be out of stock based on historical inventory data. Customer behavior is highly dynamic since footwear demand is influenced by many different factors. You want to serve models that are trained on all available data, but track your performance on specific subsets of data before pushing to production. What is the most streamlined and reliable way to perform this validation?
You are developing ML models with Al Platform for image segmentation on CT scans. You frequently update your model architectures based on the newest available research papers, and have to rerun training on the same dataset to benchmark their performance. You want to minimize computation costs and manual intervention while having version control for your code. What should you do?
You are building a predictive maintenance model to preemptively detect part defects in bridges. You plan to use high definition images of the bridges as model inputs. You need to explain the output of the model to the relevant stakeholders so they can take appropriate action. How should you build the model?
You are developing a training pipeline for a new XGBoost classification model based on tabular data The data is stored in a BigQuery table You need to complete the following steps
1. Randomly split the data into training and evaluation datasets in a 65/35 ratio
2. Conduct feature engineering
3 Obtain metrics for the evaluation dataset.
4 Compare models trained in different pipeline executions
How should you execute these steps'?
You work for a gaming company that has millions of customers around the world. All games offer a chat feature that allows players to communicate with each other in real time. Messages can be typed in more than 20 languages and are translated in real time using the Cloud Translation API. You have been asked to build an ML system to moderate the chat in real time while assuring that the performance is uniform across the various languages and without changing the serving infrastructure.
You trained your first model using an in-house word2vec model for embedding the chat messages translated by the Cloud Translation API. However, the model has significant differences in performance across the different languages. How should you improve it?
You are creating a social media app where pet owners can post images of their pets. You have one million user uploaded images with hashtags. You want to build a comprehensive system that recommends images to users that are similar in appearance to their own uploaded images.
What should you do?
You have recently created a proof-of-concept (POC) deep learning model. You are satisfied with the overall architecture, but you need to determine the value for a couple of hyperparameters. You want to perform hyperparameter tuning on Vertex AI to determine both the appropriate embedding dimension for a categorical feature used by your model and the optimal learning rate. You configure the following settings:
For the embedding dimension, you set the type to INTEGER with a minValue of 16 and maxValue of 64.
For the learning rate, you set the type to DOUBLE with a minValue of 10e-05 and maxValue of 10e-02.
You are using the default Bayesian optimization tuning algorithm, and you want to maximize model accuracy. Training time is not a concern. How should you set the hyperparameter scaling for each hyperparameter and the maxParallelTrials?
You are working with a dataset that contains customer transactions. You need to build an ML model to predict customer purchase behavior You plan to develop the model in BigQuery ML, and export it to Cloud Storage for online prediction You notice that the input data contains a few categorical features, including product category and payment method You want to deploy the model as quickly as possible. What should you do?
Your work for a textile manufacturing company. Your company has hundreds of machines and each machine has many sensors. Your team used the sensory data to build hundreds of ML models that detect machine anomalies Models are retrained daily and you need to deploy these models in a cost-effective way. The models must operate 24/7 without downtime and make sub millisecond predictions. What should you do?
You received a training-serving skew alert from a Vertex Al Model Monitoring job running in production. You retrained the model with more recent training data, and deployed it back to the Vertex Al endpoint but you are still receiving the same alert. What should you do?
You have a demand forecasting pipeline in production that uses Dataflow to preprocess raw data prior to model training and prediction. During preprocessing, you employ Z-score normalization on data stored in BigQuery and write it back to BigQuery. New training data is added every week. You want to make the process more efficient by minimizing computation time and manual intervention. What should you do?
You work with a learn of researchers lo develop state-of-the-art algorithms for financial analysis. Your team develops and debugs complex models in TensorFlow. You want to maintain the ease of debugging while also reducing the model training time. How should you set up your training environment?
You work for a bank. You have created a custom model to predict whether a loan application should be flagged for human review. The input features are stored in a BigQuery table. The model is performing well and you plan to deploy it to production. Due to compliance requirements the model must provide explanations for each prediction. You want to add this functionality to your model code with minimal effort and provide explanations that are as accurate as possible What should you do?
Your team is building a convolutional neural network (CNN)-based architecture from scratch. The preliminary experiments running on your on-premises CPU-only infrastructure were encouraging, but have slow convergence. You have been asked to speed up model training to reduce time-to-market. You want to experiment with virtual machines (VMs) on Google Cloud to leverage more powerful hardware. Your code does not include any manual device placement and has not been wrapped in Estimator model-level abstraction. Which environment should you train your model on?
You developed a Vertex Al ML pipeline that consists of preprocessing and training steps and each set of steps runs on a separate custom Docker image Your organization uses GitHub and GitHub Actions as CI/CD to run unit and integration tests You need to automate the model retraining workflow so that it can be initiated both manually and when a new version of the code is merged in the main branch You want to minimize the steps required to build the workflow while also allowing for maximum flexibility How should you configure the CI/CD workflow?
You need to build an ML model for a social media application to predict whether a user’s submitted profile photo meets the requirements. The application will inform the user if the picture meets the requirements. How should you build a model to ensure that the application does not falsely accept a non-compliant picture?
You work for a manufacturing company. You need to train a custom image classification model to detect product detects at the end of an assembly line. Although your model is performing well, some images in your holdout set are consistently mislabeled with high confidence. You want to use Vertex Al to understand your models results. What should you do?
You are building a real-time prediction engine that streams files which may contain Personally Identifiable Information (Pll) to Google Cloud. You want to use the Cloud Data Loss Prevention (DLP) API to scan the files. How should you ensure that the Pll is not accessible by unauthorized individuals?
You recently deployed a model to a Vertex Al endpoint Your data drifts frequently so you have enabled request-response logging and created a Vertex Al Model Monitoring job. You have observed that your model is receiving higher traffic than expected. You need to reduce the model monitoring cost while continuing to quickly detect drift. What should you do?
You are working on a classification problem with time series data and achieved an area under the receiver operating characteristic curve (AUC ROC) value of 99% for training data after just a few experiments. You haven’t explored using any sophisticated algorithms or spent any time on hyperparameter tuning. What should your next step be to identify and fix the problem?
You are building a custom image classification model and plan to use Vertex Al Pipelines to implement the end-to-end training. Your dataset consists of images that need to be preprocessed before they can be used to train the model. The preprocessing steps include resizing the images, converting them to grayscale, and extracting features. You have already implemented some Python functions for the preprocessing tasks. Which components should you use in your pipeline'?
You manage a team of data scientists who use a cloud-based backend system to submit training jobs. This system has become very difficult to administer, and you want to use a managed service instead. The data scientists you work with use many different frameworks, including Keras, PyTorch, theano, scikit-learn, and custom libraries. What should you do?
You have trained a model by using data that was preprocessed in a batch Dataflow pipeline Your use case requires real-time inference. You want to ensure that the data preprocessing logic is applied consistently between training and serving. What should you do?
You work for a hospital that wants to optimize how it schedules operations. You need to create a model that uses the relationship between the number of surgeries scheduled and beds used You want to predict how many beds will be needed for patients each day in advance based on the scheduled surgeries You have one year of data for the hospital organized in 365 rows
The data includes the following variables for each day
• Number of scheduled surgeries
• Number of beds occupied
• Date
You want to maximize the speed of model development and testing What should you do?
You work at a large organization that recently decided to move their ML and data workloads to Google Cloud. The data engineering team has exported the structured data to a Cloud Storage bucket in Avro format. You need to propose a workflow that performs analytics, creates features, and hosts the features that your ML models use for online prediction How should you configure the pipeline?
You are working on a system log anomaly detection model for a cybersecurity organization. You have developed the model using TensorFlow, and you plan to use it for real-time prediction. You need to create a Dataflow pipeline to ingest data via Pub/Sub and write the results to BigQuery. You want to minimize the serving latency as much as possible. What should you do?
Your task is classify if a company logo is present on an image. You found out that 96% of a data does not include a logo. You are dealing with data imbalance problem. Which metric do you use to evaluate to model?
You are an ML engineer at a manufacturing company. You need to build a model that identifies defects in products based on images of the product taken at the end of the assembly line. You want your model to preprocess the images with lower computation to quickly extract features of defects in products. Which approach should you use to build the model?
You are developing an image recognition model using PyTorch based on ResNet50 architecture Your code is working fine on your local laptop on a small subsample. Your full dataset has 200k labeled images You want to quickly scale your training workload while minimizing cost. You plan to use 4 V100 GPUs What should you do?
You developed a Python module by using Keras to train a regression model. You developed two model architectures, linear regression and deep neural network (DNN). within the same module. You are using the – raining_method argument to select one of the two methods, and you are using the Learning_rate-and num_hidden_layers arguments in the DNN. You plan to use Vertex Al's hypertuning service with a Budget to perform 100 trials. You want to identify the model architecture and hyperparameter values that minimize training loss and maximize model performance What should you do?
You work for an online travel agency that also sells advertising placements on its website to other companies.
You have been asked to predict the most relevant web banner that a user should see next. Security is
important to your company. The model latency requirements are 300ms@p99, the inventory is thousands of web banners, and your exploratory analysis has shown that navigation context is a good predictor. You want to Implement the simplest solution. How should you configure the prediction pipeline?
You want to migrate a scikrt-learn classifier model to TensorFlow. You plan to train the TensorFlow classifier model using the same training set that was used to train the scikit-learn model and then compare the performances using a common test set. You want to use the Vertex Al Python SDK to manually log the evaluation metrics of each model and compare them based on their F1 scores and confusion matrices. How should you log the metrics?
You work for a retail company. You have created a Vertex Al forecast model that produces monthly item sales predictions. You want to quickly create a report that will help to explain how the model calculates the predictions. You have one month of recent actual sales data that was not included in the training dataset. How should you generate data for your report?
You work for a manufacturing company. You need to train a custom image classification model to detect product defects at the end of an assembly line Although your model is performing well some images in your holdout set are consistently mislabeled with high confidence You want to use Vertex Al to understand your model's results What should you do?
You are an ML engineer at a mobile gaming company. A data scientist on your team recently trained a TensorFlow model, and you are responsible for deploying this model into a mobile application. You discover that the inference latency of the current model doesn’t meet production requirements. You need to reduce the inference time by 50%, and you are willing to accept a small decrease in model accuracy in order to reach the latency requirement. Without training a new model, which model optimization technique for reducing latency should you try first?
You are profiling the performance of your TensorFlow model training time and notice a performance issue caused by inefficiencies in the input data pipeline for a single 5 terabyte CSV file dataset on Cloud Storage. You need to optimize the input pipeline performance. Which action should you try first to increase the efficiency of your pipeline?
You work at an ecommerce startup. You need to create a customer churn prediction model Your company's recent sales records are stored in a BigQuery table You want to understand how your initial model is making predictions. You also want to iterate on the model as quickly as possible while minimizing cost How should you build your first model?
You are an ML engineer at a bank. You have developed a binary classification model using AutoML Tables to predict whether a customer will make loan payments on time. The output is used to approve or reject loan requests. One customer’s loan request has been rejected by your model, and the bank’s risks department is asking you to provide the reasons that contributed to the model’s decision. What should you do?
You are developing an ML model intended to classify whether X-Ray images indicate bone fracture risk. You have trained on Api Resnet architecture on Vertex AI using a TPU as an accelerator, however you are unsatisfied with the trainning time and use memory usage. You want to quickly iterate your training code but make minimal changes to the code. You also want to minimize impact on the models accuracy. What should you do?
You work for a retail company. You have been tasked with building a model to determine the probability of churn for each customer. You need the predictions to be interpretable so the results can be used to develop marketing campaigns that target at-risk customers. What should you do?
Your data science team needs to rapidly experiment with various features, model architectures, and hyperparameters. They need to track the accuracy metrics for various experiments and use an API to query the metrics over time. What should they use to track and report their experiments while minimizing manual effort?
You lead a data science team at a large international corporation. Most of the models your team trains are large-scale models using high-level TensorFlow APIs on AI Platform with GPUs. Your team usually
takes a few weeks or months to iterate on a new version of a model. You were recently asked to review your team’s spending. How should you reduce your Google Cloud compute costs without impacting the model’s performance?
You are training a TensorFlow model on a structured data set with 100 billion records stored in several CSV files. You need to improve the input/output execution performance. What should you do?
You trained a text classification model. You have the following SignatureDefs:
What is the correct way to write the predict request?
You work for a delivery company. You need to design a system that stores and manages features such as parcels delivered and truck locations over time. The system must retrieve the features with low latency and feed those features into a model for online prediction. The data science team will retrieve historical data at a specific point in time for model training. You want to store the features with minimal effort. What should you do?
You developed a custom model by using Vertex Al to forecast the sales of your company s products based on historical transactional data You anticipate changes in the feature distributions and the correlations between the features in the near future You also expect to receive a large volume of prediction requests You plan to use Vertex Al Model Monitoring for drift detection and you want to minimize the cost. What should you do?
You are an ML engineer in the contact center of a large enterprise. You need to build a sentiment analysis tool that predicts customer sentiment from recorded phone conversations. You need to identify the best approach to building a model while ensuring that the gender, age, and cultural differences of the customers who called the contact center do not impact any stage of the model development pipeline and results. What should you do?
You are developing a mode! to detect fraudulent credit card transactions. You need to prioritize detection because missing even one fraudulent transaction could severely impact the credit card holder. You used AutoML to tram a model on users' profile information and credit card transaction data. After training the initial model, you notice that the model is failing to detect many fraudulent transactions. How should you adjust the training parameters in AutoML to improve model performance?
Choose 2 answers
You are an ML engineer at a travel company. You have been researching customers’ travel behavior for many years, and you have deployed models that predict customers’ vacation patterns. You have observed that customers’ vacation destinations vary based on seasonality and holidays; however, these seasonal variations are similar across years. You want to quickly and easily store and compare the model versions and performance statistics across years. What should you do?