New Year Special Limited Time Flat 70% Discount offer - Ends in 0d 00h 00m 00s - Coupon code: 70spcl

Google Professional-Machine-Learning-Engineer Google Professional Machine Learning Engineer Exam Practice Test

Page: 1 / 29
Total 285 questions

Google Professional Machine Learning Engineer Questions and Answers

Question 1

You work for an online grocery store. You recently developed a custom ML model that recommends a recipe when a user arrives at the website. You chose the machine type on the Vertex Al endpoint to optimize costs by using the queries per second (QPS) that the model can serve, and you deployed it on a single machine with 8 vCPUs and no accelerators.

A holiday season is approaching and you anticipate four times more traffic during this time than the typical daily traffic You need to ensure that the model can scale efficiently to the increased demand. What should you do?

Options:

A.

1, Maintain the same machine type on the endpoint.

2 Set up a monitoring job and an alert for CPU usage

3 If you receive an alert add a compute node to the endpoint

B.

1 Change the machine type on the endpoint to have 32 vCPUs

2. Set up a monitoring job and an alert for CPU usage

3 If you receive an alert, scale the vCPUs further as needed

C.

1 Maintain the same machine type on the endpoint Configure the endpoint to enable autoscalling based on vCPU usage.

2 Set up a monitoring job and an alert for CPU usage

3 If you receive an alert investigate the cause

D.

1 Change the machine type on the endpoint to have a GPU_ Configure the endpoint to enable autoscaling based on the GPU usage.

2 Set up a monitoring job and an alert for GPU usage.

3 If you receive an alert investigate the cause.

Question 2

You are developing models to classify customer support emails. You created models with TensorFlow Estimators using small datasets on your on-premises system, but you now need to train the models using large datasets to ensure high performance. You will port your models to Google Cloud and want to minimize code refactoring and infrastructure overhead for easier migration from on-prem to cloud. What should you do?

Options:

A.

Use Vertex Al Platform for distributed training

B.

Create a cluster on Dataproc for training

C.

Create a Managed Instance Group with autoscaling

D.

Use Kubeflow Pipelines to train on a Google Kubernetes Engine cluster.

Question 3

Your team needs to build a model that predicts whether images contain a driver's license, passport, or credit card. The data engineering team already built the pipeline and generated a dataset composed of 10,000 images with driver's licenses, 1,000 images with passports, and 1,000 images with credit cards. You now have to train a model with the following label map: ['driversjicense', 'passport', 'credit_card']. Which loss function should you use?

Options:

A.

Categorical hinge

B.

Binary cross-entropy

C.

Categorical cross-entropy

D.

Sparse categorical cross-entropy

Question 4

You are training and deploying updated versions of a regression model with tabular data by using Vertex Al Pipelines. Vertex Al Training Vertex Al Experiments and Vertex Al Endpoints. The model is deployed in a Vertex Al endpoint and your users call the model by using the Vertex Al endpoint. You want to receive an email when the feature data distribution changes significantly, so you can retrigger the training pipeline and deploy an updated version of your model What should you do?

Options:

A.

Use Vertex Al Model Monitoring Enable prediction drift monitoring on the endpoint. and specify a notification email.

B.

In Cloud Logging, create a logs-based alert using the logs in the Vertex Al endpoint. Configure Cloud Logging to send an email when the alert is triggered.

C.

In Cloud Monitoring create a logs-based metric and a threshold alert for the metric. Configure Cloud Monitoring to send an email when the alert is triggered.

D.

Export the container logs of the endpoint to BigQuery Create a Cloud Function to run a SQL query over the exported logs and send an email. Use Cloud Scheduler to trigger the Cloud Function.

Question 5

You have recently used TensorFlow to train a classification model on tabular data You have created a Dataflow pipeline that can transform several terabytes of data into training or prediction datasets consisting of TFRecords. You now need to productionize the model, and you want the predictions to be automatically uploaded to a BigQuery table on a weekly schedule. What should you do?

Options:

A.

Import the model into Vertex Al and deploy it to a Vertex Al endpoint On Vertex Al Pipelines create a pipeline that uses the Dataf lowPythonJobop and the Mcdei3archPredictoc components.

B.

Import the model into Vertex Al and deploy it to a Vertex Al endpoint Create a Dataflow pipeline that reuses the data processing logic sends requests to the endpoint and then uploads predictions to a BigQuery table.

C.

Import the model into Vertex Al On Vertex Al Pipelines, create a pipeline that uses the DatafIowPythonJobOp and the ModelBatchPredictOp components.

D.

Import the model into BigQuery Implement the data processing logic in a SQL query On Vertex Al Pipelines create a pipeline that uses the BigqueryQueryJobop and the EigqueryPredictModejobOp components.

Question 6

You have a functioning end-to-end ML pipeline that involves tuning the hyperparameters of your ML model using Al Platform, and then using the best-tuned parameters for training. Hypertuning is taking longer than expected and is delaying the downstream processes. You want to speed up the tuning job without significantly compromising its effectiveness. Which actions should you take?

Choose 2 answers

Options:

A.

Decrease the number of parallel trials

B.

Decrease the range of floating-point values

C.

Set the early stopping parameter to TRUE

D.

Change the search algorithm from Bayesian search to random search.

E.

Decrease the maximum number of trials during subsequent training phases.

Question 7

You work for a large retailer and you need to build a model to predict customer churn. The company has a dataset of historical customer data, including customer demographics, purchase history, and website activity. You need to create the model in BigQuery ML and thoroughly evaluate its performance. What should you do?

Options:

A.

Create a linear regression model in BigQuery ML and register the model in Vertex Al Model Registry Evaluate the model performance in Vertex Al.

B.

Create a logistic regression model in BigQuery ML and register the model in Vertex Al Model Registry. Evaluate the model performance in Vertex Al.

C.

Create a linear regression model in BigQuery ML Use the ml. evaluate function to evaluate the model performance.

D.

Create a logistic regression model in BigQuery ML Use the ml.confusion_matrix function to evaluate the model performance.

Question 8

You need to train a computer vision model that predicts the type of government ID present in a given image using a GPU-powered virtual machine on Compute Engine. You use the following parameters:

• Optimizer: SGD

• Image shape = 224x224

• Batch size = 64

• Epochs = 10

• Verbose = 2

During training you encounter the following error: ResourceExhaustedError: out of Memory (oom) when allocating tensor. What should you do?

Options:

A.

Change the optimizer

B.

Reduce the batch size

C.

Change the learning rate

D.

Reduce the image shape

Question 9

Your team frequently creates new ML models and runs experiments. Your team pushes code to a single repository hosted on Cloud Source Repositories. You want to create a continuous integration pipeline that automatically retrains the models whenever there is any modification of the code. What should be your first step to set up the CI pipeline?

Options:

A.

Configure a Cloud Build trigger with the event set as "Pull Request"

B.

Configure a Cloud Build trigger with the event set as "Push to a branch"

C.

Configure a Cloud Function that builds the repository each time there is a code change.

D.

Configure a Cloud Function that builds the repository each time a new branch is created.

Question 10

You are responsible for building a unified analytics environment across a variety of on-premises data marts. Your company is experiencing data quality and security challenges when integrating data across the servers, caused by the use of a wide range of disconnected tools and temporary solutions. You need a fully managed, cloud-native data integration service that will lower the total cost of work and reduce repetitive work. Some members on your team prefer a codeless interface for building Extract, Transform, Load (ETL) process. Which service should you use?

Options:

A.

Dataflow

B.

Dataprep

C.

Apache Flink

D.

Cloud Data Fusion

Question 11

You are experimenting with a built-in distributed XGBoost model in Vertex AI Workbench user-managed notebooks. You use BigQuery to split your data into training and validation sets using the following queries:

CREATE OR REPLACE TABLE ‘myproject.mydataset.training‘ AS

(SELECT * FROM ‘myproject.mydataset.mytable‘ WHERE RAND() <= 0.8);

CREATE OR REPLACE TABLE ‘myproject.mydataset.validation‘ AS

(SELECT * FROM ‘myproject.mydataset.mytable‘ WHERE RAND() <= 0.2);

After training the model, you achieve an area under the receiver operating characteristic curve (AUC ROC) value of 0.8, but after deploying the model to production, you notice that your model performance has dropped to an AUC ROC value of 0.65. What problem is most likely occurring?

Options:

A.

There is training-serving skew in your production environment.

B.

There is not a sufficient amount of training data.

C.

The tables that you created to hold your training and validation records share some records, and you may not be using all the data in your initial table.

D.

The RAND() function generated a number that is less than 0.2 in both instances, so every record in the validation table will also be in the training table.

Question 12

Your team is building an application for a global bank that will be used by millions of customers. You built a forecasting model that predicts customers1 account balances 3 days in the future. Your team will use the results in a new feature that will notify users when their account balance is likely to drop below $25. How should you serve your predictions?

Options:

A.

1. Create a Pub/Sub topic for each user

2 Deploy a Cloud Function that sends a notification when your model predicts that a user's account balance will drop below the $25 threshold.

B.

1. Create a Pub/Sub topic for each user

2. Deploy an application on the App Engine standard environment that sends a notification when your model predicts that

a user's account balance will drop below the $25 threshold

C.

1. Build a notification system on Firebase

2. Register each user with a user ID on the Firebase Cloud Messaging server, which sends a notification when the average of all account balance predictions drops below the $25 threshold

D.

1 Build a notification system on Firebase

2. Register each user with a user ID on the Firebase Cloud Messaging server, which sends a notification when your model predicts that a user's account balance will drop below the $25 threshold

Question 13

You are an ML engineer at a global car manufacturer. You need to build an ML model to predict car sales in different cities around the world. Which features or feature crosses should you use to train city-specific relationships between car type and number of sales?

Options:

A.

Three individual features binned latitude, binned longitude, and one-hot encoded car type

B.

One feature obtained as an element-wise product between latitude, longitude, and car type

C.

One feature obtained as an element-wise product between binned latitude, binned longitude, and one-hot encoded car type

D.

Two feature crosses as a element-wise product the first between binned latitude and one-hot encoded car type, and the second between binned longitude and one-hot encoded car type

Question 14

You are developing a Kubeflow pipeline on Google Kubernetes Engine. The first step in the pipeline is to issue a query against BigQuery. You plan to use the results of that query as the input to the next step in your pipeline. You want to achieve this in the easiest way possible. What should you do?

Options:

A.

Use the BigQuery console to execute your query and then save the query results Into a new BigQuery table.

B.

Write a Python script that uses the BigQuery API to execute queries against BigQuery Execute this script as the first step in your Kubeflow pipeline

C.

Use the Kubeflow Pipelines domain-specific language to create a custom component that uses the Python BigQuery client library to execute queries

D.

Locate the Kubeflow Pipelines repository on GitHub Find the BigQuery Query Component, copy that component's URL, and use it to load the component into your pipeline. Use the component to execute queries against BigQuery

Question 15

You developed a BigQuery ML linear regressor model by using a training dataset stored in a BigQuery table. New data is added to the table every minute. You are using Cloud Scheduler and Vertex Al Pipelines to automate hourly model training, and use the model for direct inference. The feature preprocessing logic includes quantile bucketization and MinMax scaling on data received in the last hour. You want to minimize storage and computational overhead. What should you do?

Options:

A.

Create a component in the Vertex Al Pipelines directed acyclic graph (DAG) to calculate the required statistics, and pass the statistics on to subsequent components.

B.

Preprocess and stage the data in BigQuery prior to feeding it to the model during training and inference.

C.

Create SQL queries to calculate and store the required statistics in separate BigQuery tables that are referenced in the CREATE MODEL statement.

D.

Use the TRANSFORM clause in the CREATE MODEL statement in the SQL query to calculate the required statistics.

Question 16

You are going to train a DNN regression model with Keras APIs using this code:

Question # 16

How many trainable weights does your model have? (The arithmetic below is correct.)

Options:

A.

501*256+257*128+2 = 161154

B.

500*256+256*128+128*2 = 161024

C.

501*256+257*128+128*2=161408

D.

500*256*0 25+256*128*0 25+128*2 = 40448

Question 17

You work for a toy manufacturer that has been experiencing a large increase in demand. You need to build an ML model to reduce the amount of time spent by quality control inspectors checking for product defects. Faster defect detection is a priority. The factory does not have reliable Wi-Fi. Your company wants to implement the new ML model as soon as possible. Which model should you use?

Options:

A.

AutoML Vision model

B.

AutoML Vision Edge mobile-versatile-1 model

C.

AutoML Vision Edge mobile-low-latency-1 model

D.

AutoML Vision Edge mobile-high-accuracy-1 model

Question 18

You are training an ML model using data stored in BigQuery that contains several values that are considered Personally Identifiable Information (Pll). You need to reduce the sensitivity of the dataset before training your model. Every column is critical to your model. How should you proceed?

Options:

A.

Using Dataflow, ingest the columns with sensitive data from BigQuery, and then randomize the values in each sensitive column.

B.

Use the Cloud Data Loss Prevention (DLP) API to scan for sensitive data, and use Dataflow with the DLP API to encrypt sensitive values with Format Preserving Encryption

C.

Use the Cloud Data Loss Prevention (DLP) API to scan for sensitive data, and use Dataflow to replace all sensitive data by using the encryption algorithm AES-256 with a salt.

D.

Before training, use BigQuery to select only the columns that do not contain sensitive data Create an authorized view of the data so that sensitive values cannot be accessed by unauthorized individuals.

Question 19

You need to design an architecture that serves asynchronous predictions to determine whether a particular mission-critical machine part will fail. Your system collects data from multiple sensors from the machine. You want to build a model that will predict a failure in the next N minutes, given the average of each sensor’s data from the past 12 hours. How should you design the architecture?

Options:

A.

1. HTTP requests are sent by the sensors to your ML model, which is deployed as a microservice and exposes a REST API for prediction

2. Your application queries a Vertex AI endpoint where you deployed your model.

3. Responses are received by the caller application as soon as the model produces the prediction.

B.

1. Events are sent by the sensors to Pub/Sub, consumed in real time, and processed by a Dataflow stream processing pipeline.

2. The pipeline invokes the model for prediction and sends the predictions to another Pub/Sub topic.

3. Pub/Sub messages containing predictions are then consumed by a downstream system for monitoring.

C.

1. Export your data to Cloud Storage using Dataflow.

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into Cloud SQL.

D.

1. Export the data to Cloud Storage using the BigQuery command-line tool

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into BigQuery.

Question 20

You work with a team of researchers to develop state-of-the-art algorithms for financial analysis. Your team develops and debugs complex models in TensorFlow. You want to maintain the ease of debugging while also reducing the model training time. How should you set up your training environment?

Options:

A.

Configure a v3-8 TPU VM SSH into the VM to tram and debug the model.

B.

Configure a v3-8 TPU node Use Cloud Shell to SSH into the Host VM to train and debug the model.

C.

Configure a M-standard-4 VM with 4 NVIDIA P100 GPUs SSH into the VM and use

Parameter Server Strategy to train the model.

D.

Configure a M-standard-4 VM with 4 NVIDIA P100 GPUs SSH into the VM and use

MultiWorkerMirroredStrategy to train the model.

Question 21

You work for a company that captures live video footage of checkout areas in their retail stores You need to use the live video footage to build a mode! to detect the number of customers waiting for service in near real time You want to implement a solution quickly and with minimal effort How should you build the model?

Options:

A.

Use the Vertex Al Vision Occupancy Analytics model.

B.

Use the Vertex Al Vision Person/vehicle detector model

C.

Train an AutoML object detection model on an annotated dataset by using Vertex AutoML

D.

Train a Seq2Seq+ object detection model on an annotated dataset by using Vertex AutoML

Question 22

You are an ML engineer at a manufacturing company You are creating a classification model for a predictive maintenance use case You need to predict whether a crucial machine will fail in the next three days so that the repair crew has enough time to fix the machine before it breaks. Regular maintenance of the machine is relatively inexpensive, but a failure would be very costly You have trained several binary classifiers to predict whether the machine will fail. where a prediction of 1 means that the ML model predicts a failure.

You are now evaluating each model on an evaluation dataset. You want to choose a model that prioritizes detection while ensuring that more than 50% of the maintenance jobs triggered by your model address an imminent machine failure. Which model should you choose?

Options:

A.

The model with the highest area under the receiver operating characteristic curve (AUC ROC) and precision greater than 0 5

B.

The model with the lowest root mean squared error (RMSE) and recall greater than 0.5.

C.

The model with the highest recall where precision is greater than 0.5.

D.

The model with the highest precision where recall is greater than 0.5.

Question 23

You recently deployed a scikit-learn model to a Vertex Al endpoint You are now testing the model on live production traffic While monitoring the endpoint. you discover twice as many requests per hour than expected throughout the day You want the endpoint to efficiently scale when the demand increases in the future to prevent users from experiencing high latency What should you do?

Options:

A.

Deploy two models to the same endpoint and distribute requests among them evenly.

B.

Configure an appropriate minReplicaCount value based on expected baseline traffic.

C.

Set the target utilization percentage in the autcscalir.gMetricspecs configuration to a higher value

D.

Change the model's machine type to one that utilizes GPUs.

Question 24

Your data science team is training a PyTorch model for image classification based on a pre-trained RestNet model. You need to perform hyperparameter tuning to optimize for several parameters. What should you do?

Options:

A.

Convert the model to a Keras model, and run a Keras Tuner job.

B.

Run a hyperparameter tuning job on AI Platform using custom containers.

C.

Create a Kuberflow Pipelines instance, and run a hyperparameter tuning job on Katib.

D.

Convert the model to a TensorFlow model, and run a hyperparameter tuning job on AI Platform.

Question 25

Your team is training a large number of ML models that use different algorithms, parameters and datasets. Some models are trained in Vertex Ai Pipelines, and some are trained on Vertex Al Workbench notebook instances. Your team wants to compare the performance of the models across both services. You want to minimize the effort required to store the parameters and metrics What should you do?

Options:

A.

Implement an additional step for all the models running in pipelines and notebooks to export parameters and metrics to BigQuery.

B.

Create a Vertex Al experiment Submit all the pipelines as experiment runs. For models trained on notebooks log parameters and metrics by using the Vertex Al SDK.

C.

Implement all models in Vertex Al Pipelines Create a Vertex Al experiment, and associate all pipeline runs with that experiment.

D.

Store all model parameters and metrics as mode! metadata by using the Vertex Al Metadata API.

Question 26

You need to develop a custom TensorRow model that will be used for online predictions. The training data is stored in BigQuery. You need to apply instance-level data transformations to the data for model training and serving. You want to use the same preprocessing routine during model training and serving. How should you configure the preprocessing routine?

Options:

A.

Create a BigQuery script to preprocess the data, and write the result to another BigQuery table.

B.

Create a pipeline in Vertex Al Pipelines to read the data from BigQuery and preprocess it using a custom preprocessing component.

C.

Create a preprocessing function that reads and transforms the data from BigQuery Create a Vertex Al custom prediction routine that calls the preprocessing function at serving time.

D.

Create an Apache Beam pipeline to read the data from BigQuery and preprocess it by using TensorFlow Transform and Dataflow.

Question 27

You work for a large social network service provider whose users post articles and discuss news. Millions of comments are posted online each day, and more than 200 human moderators constantly review comments and flag those that are inappropriate. Your team is building an ML model to help human moderators check content on the platform. The model scores each comment and flags suspicious comments to be reviewed by a human. Which metric(s) should you use to monitor the model’s performance?

Options:

A.

Number of messages flagged by the model per minute

B.

Number of messages flagged by the model per minute confirmed as being inappropriate by humans.

C.

Precision and recall estimates based on a random sample of 0.1% of raw messages each minute sent to a human for review

D.

Precision and recall estimates based on a sample of messages flagged by the model as potentially inappropriate each minute

Question 28

You have recently trained a scikit-learn model that you plan to deploy on Vertex Al. This model will support both online and batch prediction. You need to preprocess input data for model inference. You want to package the model for deployment while minimizing additional code What should you do?

Options:

A.

1 Upload your model to the Vertex Al Model Registry by using a prebuilt scikit-learn prediction container

2 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job that uses the instanceConfig.inscanceType setting to transform your input data

B.

1 Wrap your model in a custom prediction routine (CPR). and build a container image from the CPR local model

2 Upload your sci-kit learn model container to Vertex Al Model Registry

3 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job

C.

1. Create a custom container for your sci-kit learn model,

2 Define a custom serving function for your model

3 Upload your model and custom container to Vertex Al Model Registry

4 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job

D.

1 Create a custom container for your sci-kit learn model.

2 Upload your model and custom container to Vertex Al Model Registry

3 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job that uses the instanceConfig. instanceType setting to transform your input data

Question 29

You are designing an architecture with a serverless ML system to enrich customer support tickets with informative metadata before they are routed to a support agent. You need a set of models to predict ticket priority, predict ticket resolution time, and perform sentiment analysis to help agents make strategic decisions when they process support requests. Tickets are not expected to have any domain-specific terms or jargon.

The proposed architecture has the following flow:

Question # 29

Which endpoints should the Enrichment Cloud Functions call?

Options:

A.

1 = Vertex Al. 2 = Vertex Al. 3 = AutoML Natural Language

B.

1 = Vertex Al. 2 = Vertex Al. 3 = Cloud Natural Language API

C.

1 = Vertex Al. 2 = Vertex Al. 3 = AutoML Vision

D.

1 = Cloud Natural Language API. 2 = Vertex Al, 3 = Cloud Vision API

Question 30

You have been tasked with deploying prototype code to production. The feature engineering code is in PySpark and runs on Dataproc Serverless. The model training is executed by using a Vertex Al custom training job. The two steps are not connected, and the model training must currently be run manually after the feature engineering step finishes. You need to create a scalable and maintainable production process that runs end-to-end and tracks the connections between steps. What should you do?

Options:

A.

Create a Vertex Al Workbench notebook Use the notebook to submit the Dataproc Serverless feature engineering job Use the same notebook to submit the custom model training job Run the notebook cells sequentially to tie the steps together end-to-end

B.

Create a Vertex Al Workbench notebook Initiate an Apache Spark context in the notebook, and run the PySpark feature engineering code Use the same notebook to run the custom model training job in TensorFlow Run the notebook cells sequentially to tie the steps together end-to-end

C.

Use the Kubeflow pipelines SDK to write code that specifies two components

- The first is a Dataproc Serverless component that launches the feature engineering job

- The second is a custom component wrapped in the

creare_cusrora_rraining_job_from_ccraponent Utility that launches the custom model training

job.

D.

Create a Vertex Al Pipelines job to link and run both components Use the Kubeflow pipelines SDK to write code that specifies two components

- The first component initiates an Apache Spark context that runs the PySpark feature engineering code

- The second component runs the TensorFlow custom model training code Create a Vertex Al Pipelines job to link and run both components

Question 31

You are the Director of Data Science at a large company, and your Data Science team has recently begun using the Kubeflow Pipelines SDK to orchestrate their training pipelines. Your team is struggling to integrate their custom Python code into the Kubeflow Pipelines SDK. How should you instruct them to proceed in order to quickly integrate their code with the Kubeflow Pipelines SDK?

Options:

A.

Use the func_to_container_op function to create custom components from the Python code.

B.

Use the predefined components available in the Kubeflow Pipelines SDK to access Dataproc, and run the custom code there.

C.

Package the custom Python code into Docker containers, and use the load_component_from_file function to import the containers into the pipeline.

D.

Deploy the custom Python code to Cloud Functions, and use Kubeflow Pipelines to trigger the Cloud Function.

Question 32

You trained a model on data stored in a Cloud Storage bucket. The model needs to be retrained frequently in Vertex AI Training using the latest data in the bucket. Data preprocessing is required prior to retraining. You want to build a simple and efficient near-real-time ML pipeline in Vertex AI that will preprocess the data when new data arrives in the bucket. What should you do?

Options:

A.

Create a pipeline using the Vertex AI SDK. Schedule the pipeline with Cloud Scheduler to preprocess the new data in the bucket. Store the processed features in Vertex AI Feature Store.

B.

Create a Cloud Run function that is triggered when new data arrives in the bucket. The function initiates a Vertex AI Pipeline to preprocess the new data and store the processed features in Vertex AI Feature Store.

C.

Build a Dataflow pipeline to preprocess the new data in the bucket and store the processed features in BigQuery. Configure a cron job to trigger the pipeline execution.

D.

Use the Vertex AI SDK to preprocess the new data in the bucket prior to each model retraining. Store the processed features in BigQuery.

Question 33

You work with a data engineering team that has developed a pipeline to clean your dataset and save it in a Cloud Storage bucket. You have created an ML model and want to use the data to refresh your model as soon as new data is available. As part of your CI/CD workflow, you want to automatically run a Kubeflow Pipelines training job on Google Kubernetes Engine (GKE). How should you architect this workflow?

Options:

A.

Configure your pipeline with Dataflow, which saves the files in Cloud Storage After the file is saved, start the training job on a GKE cluster

B.

Use App Engine to create a lightweight python client that continuously polls Cloud Storage for new files As soon as a file arrives, initiate the training job

C.

Configure a Cloud Storage trigger to send a message to a Pub/Sub topic when a new file is available in a storage bucket. Use a Pub/Sub-triggered Cloud Function to start the training job on a GKE cluster

D.

Use Cloud Scheduler to schedule jobs at a regular interval. For the first step of the job. check the timestamp of objects in your Cloud Storage bucket If there are no new files since the last run, abort the job.

Question 34

You are an AI engineer working for a popular video streaming platform. You built a classification model using PyTorch to predict customer churn. Each week, the customer retention team plans to contact customers identified as at-risk for churning with personalized offers. You want to deploy the model while minimizing maintenance effort. What should you do?

Options:

A.

Use Vertex AI’s prebuilt containers for prediction. Deploy the container on Cloud Run to generate online predictions.

B.

Use Vertex AI’s prebuilt containers for prediction. Deploy the model on Google Kubernetes Engine (GKE), and configure the model for batch prediction.

C.

Deploy the model to a Vertex AI endpoint, and configure the model for batch prediction. Schedule the batch prediction to run weekly.

D.

Deploy the model to a Vertex AI endpoint, and configure the model for online prediction. Schedule a job to query this endpoint weekly.

Question 35

You built a custom ML model using scikit-learn. Training time is taking longer than expected. You decide to migrate your model to Vertex AI Training, and you want to improve the model’s training time. What should you try out first?

Options:

A.

Migrate your model to TensorFlow, and train it using Vertex AI Training.

B.

Train your model in a distributed mode using multiple Compute Engine VMs.

C.

Train your model with DLVM images on Vertex AI, and ensure that your code utilizes NumPy and SciPy internal methods whenever possible.

D.

Train your model using Vertex AI Training with GPUs.

Question 36

You are using Kubeflow Pipelines to develop an end-to-end PyTorch-based MLOps pipeline. The pipeline reads data from BigQuery,

processes the data, conducts feature engineering, model training, model evaluation, and deploys the model as a binary file to Cloud Storage. You are

writing code for several different versions of the feature engineering and model training steps, and running each new version in Vertex Al Pipelines.

Each pipeline run is taking over an hour to complete. You want to speed up the pipeline execution to reduce your development time, and you want to

avoid additional costs. What should you do?

Options:

A.

Delegate feature engineering to BigQuery and remove it from the pipeline.

B.

Add a GPU to the model training step.

C.

Enable caching in all the steps of the Kubeflow pipeline.

D.

Comment out the part of the pipeline that you are not currently updating.

Question 37

You work for a global footwear retailer and need to predict when an item will be out of stock based on historical inventory data. Customer behavior is highly dynamic since footwear demand is influenced by many different factors. You want to serve models that are trained on all available data, but track your performance on specific subsets of data before pushing to production. What is the most streamlined and reliable way to perform this validation?

Options:

A.

Use the TFX ModelValidator tools to specify performance metrics for production readiness

B.

Use k-fold cross-validation as a validation strategy to ensure that your model is ready for production.

C.

Use the last relevant week of data as a validation set to ensure that your model is performing accurately on current data

D.

Use the entire dataset and treat the area under the receiver operating characteristics curve (AUC ROC) as the main metric.

Question 38

You are developing ML models with Al Platform for image segmentation on CT scans. You frequently update your model architectures based on the newest available research papers, and have to rerun training on the same dataset to benchmark their performance. You want to minimize computation costs and manual intervention while having version control for your code. What should you do?

Options:

A.

Use Cloud Functions to identify changes to your code in Cloud Storage and trigger a retraining job

B.

Use the gcloud command-line tool to submit training jobs on Al Platform when you update your code

C.

Use Cloud Build linked with Cloud Source Repositories to trigger retraining when new code is pushed to the repository

D.

Create an automated workflow in Cloud Composer that runs daily and looks for changes in code in Cloud Storage using a sensor.

Question 39

You are building a predictive maintenance model to preemptively detect part defects in bridges. You plan to use high definition images of the bridges as model inputs. You need to explain the output of the model to the relevant stakeholders so they can take appropriate action. How should you build the model?

Options:

A.

Use scikit-learn to build a tree-based model, and use SHAP values to explain the model output.

B.

Use scikit-lean to build a tree-based model, and use partial dependence plots (PDP) to explain the model output.

C.

Use TensorFlow to create a deep learning-based model and use Integrated Gradients to explain the model

output.

D.

Use TensorFlow to create a deep learning-based model and use the sampled Shapley method to explain the model output.

Question 40

You are developing a training pipeline for a new XGBoost classification model based on tabular data The data is stored in a BigQuery table You need to complete the following steps

1. Randomly split the data into training and evaluation datasets in a 65/35 ratio

2. Conduct feature engineering

3 Obtain metrics for the evaluation dataset.

4 Compare models trained in different pipeline executions

How should you execute these steps'?

Options:

A.

1 Using Vertex Al Pipelines, add a component to divide the data into training and evaluation sets, and add another component for feature engineering

2. Enable auto logging of metrics in the training component.

3 Compare pipeline runs in Vertex Al Experiments

B.

1 Using Vertex Al Pipelines, add a component to divide the data into training and evaluation sets, and add another component for feature engineering

2 Enable autologging of metrics in the training component

3 Compare models using the artifacts lineage in Vertex ML Metadata

C.

1 In BigQuery ML. use the create model statement with bocstzd_tree_classifier as the model

type and use BigQuery to handle the data splits.

2 Use a SQL view to apply feature engineering and train the model using the data in that view

3. Compare the evaluation metrics of the models by using a SQL query with the ml. training_infc statement.

D.

1 In BigQuery ML use the create model statement with boosted_tree_classifier as the model

type, and use BigQuery to handle the data splits.

2 Use ml transform to specify the feature engineering transformations, and train the model using the

data in the table

' 3. Compare the evaluation metrics of the models by using a SQL query with the ml. training_info statement.

Question 41

You work for a gaming company that has millions of customers around the world. All games offer a chat feature that allows players to communicate with each other in real time. Messages can be typed in more than 20 languages and are translated in real time using the Cloud Translation API. You have been asked to build an ML system to moderate the chat in real time while assuring that the performance is uniform across the various languages and without changing the serving infrastructure.

You trained your first model using an in-house word2vec model for embedding the chat messages translated by the Cloud Translation API. However, the model has significant differences in performance across the different languages. How should you improve it?

Options:

A.

Add a regularization term such as the Min-Diff algorithm to the loss function.

B.

Train a classifier using the chat messages in their original language.

C.

Replace the in-house word2vec with GPT-3 or T5.

D.

Remove moderation for languages for which the false positive rate is too high.

Question 42

You are creating a social media app where pet owners can post images of their pets. You have one million user uploaded images with hashtags. You want to build a comprehensive system that recommends images to users that are similar in appearance to their own uploaded images.

What should you do?

Options:

A.

Download a pretrained convolutional neural network, and fine-tune the model to predict hashtags based on the input images. Use the predicted hashtags to make recommendations.

B.

Retrieve image labels and dominant colors from the input images using the Vision API. Use these properties and the hashtags to make recommendations.

C.

Use the provided hashtags to create a collaborative filtering algorithm to make recommendations.

D.

Download a pretrained convolutional neural network, and use the model to generate embeddings of the input images. Measure similarity between embeddings to make recommendations.

Question 43

You have recently created a proof-of-concept (POC) deep learning model. You are satisfied with the overall architecture, but you need to determine the value for a couple of hyperparameters. You want to perform hyperparameter tuning on Vertex AI to determine both the appropriate embedding dimension for a categorical feature used by your model and the optimal learning rate. You configure the following settings:

For the embedding dimension, you set the type to INTEGER with a minValue of 16 and maxValue of 64.

For the learning rate, you set the type to DOUBLE with a minValue of 10e-05 and maxValue of 10e-02.

You are using the default Bayesian optimization tuning algorithm, and you want to maximize model accuracy. Training time is not a concern. How should you set the hyperparameter scaling for each hyperparameter and the maxParallelTrials?

Options:

A.

Use UNIT_LINEAR_SCALE for the embedding dimension, UNIT_LOG_SCALE for the learning rate, and a large number of parallel trials.

B.

Use UNIT_LINEAR_SCALE for the embedding dimension, UNIT_LOG_SCALE for the learning rate, and a small number of parallel trials.

C.

Use UNIT_LOG_SCALE for the embedding dimension, UNIT_LINEAR_SCALE for the learning rate, and a large number of parallel trials.

D.

Use UNIT_LOG_SCALE for the embedding dimension, UNIT_LINEAR_SCALE for the learning rate, and a small number of parallel trials.

Question 44

You are working with a dataset that contains customer transactions. You need to build an ML model to predict customer purchase behavior You plan to develop the model in BigQuery ML, and export it to Cloud Storage for online prediction You notice that the input data contains a few categorical features, including product category and payment method You want to deploy the model as quickly as possible. What should you do?

Options:

A.

Use the transform clause with the ML. ONE_HOT_ENCODER function on the categorical features at model creation and select the categorical and non-categorical features.

B.

Use the ML. ONE_HOT_ENCODER function on the categorical features, and select the encoded categorical features and non-categorical features as inputs to create your model.

C.

Use the create model statement and select the categorical and non-categorical features.

D.

Use the ML. ONE_HOT_ENCODER function on the categorical features, and select the encoded categorical features and non-categorical features as inputs to create your model.

Question 45

Your work for a textile manufacturing company. Your company has hundreds of machines and each machine has many sensors. Your team used the sensory data to build hundreds of ML models that detect machine anomalies Models are retrained daily and you need to deploy these models in a cost-effective way. The models must operate 24/7 without downtime and make sub millisecond predictions. What should you do?

Options:

A.

Deploy a Dataflow batch pipeline and a Vertex Al Prediction endpoint.

B.

Deploy a Dataflow batch pipeline with the Runlnference API. and use model refresh.

C.

Deploy a Dataflow streaming pipeline and a Vertex Al Prediction endpoint with autoscaling.

D.

Deploy a Dataflow streaming pipeline with the Runlnference API and use automatic model refresh.

Question 46

You received a training-serving skew alert from a Vertex Al Model Monitoring job running in production. You retrained the model with more recent training data, and deployed it back to the Vertex Al endpoint but you are still receiving the same alert. What should you do?

Options:

A.

Update the model monitoring job to use a lower sampling rate.

B.

Update the model monitoring job to use the more recent training data that was used to retrain the model.

C.

Temporarily disable the alert Enable the alert again after a sufficient amount of new production traffic has passed through the Vertex Al endpoint.

D.

Temporarily disable the alert until the model can be retrained again on newer training data Retrain the model again after a sufficient amount of new production traffic has passed through the Vertex Al endpoint

Question 47

You have a demand forecasting pipeline in production that uses Dataflow to preprocess raw data prior to model training and prediction. During preprocessing, you employ Z-score normalization on data stored in BigQuery and write it back to BigQuery. New training data is added every week. You want to make the process more efficient by minimizing computation time and manual intervention. What should you do?

Options:

A.

Normalize the data using Google Kubernetes Engine

B.

Translate the normalization algorithm into SQL for use with BigQuery

C.

Use the normalizer_fn argument in TensorFlow's Feature Column API

D.

Normalize the data with Apache Spark using the Dataproc connector for BigQuery

Question 48

You work with a learn of researchers lo develop state-of-the-art algorithms for financial analysis. Your team develops and debugs complex models in TensorFlow. You want to maintain the ease of debugging while also reducing the model training time. How should you set up your training environment?

Options:

A.

Configure a v3-8 TPU VM.

B.

Configure a v3-8 TPU node.

C.

Configure a c2-standard-60 VM without GPUs.

D, Configure a n1-standard-4 VM with 1 NVIDIA P100 GPU.

Question 49

You work for a bank. You have created a custom model to predict whether a loan application should be flagged for human review. The input features are stored in a BigQuery table. The model is performing well and you plan to deploy it to production. Due to compliance requirements the model must provide explanations for each prediction. You want to add this functionality to your model code with minimal effort and provide explanations that are as accurate as possible What should you do?

Options:

A.

Create an AutoML tabular model by using the BigQuery data with integrated Vertex Explainable Al.

B.

Create a BigQuery ML deep neural network model, and use the ML. EXPLAIN_PREDICT method with the num_integral_steps parameter.

C.

Upload the custom model to Vertex Al Model Registry and configure feature-based attribution by using sampled Shapley with input baselines.

D.

Update the custom serving container to include sampled Shapley-based explanations in the prediction outputs.

Question 50

Your team is building a convolutional neural network (CNN)-based architecture from scratch. The preliminary experiments running on your on-premises CPU-only infrastructure were encouraging, but have slow convergence. You have been asked to speed up model training to reduce time-to-market. You want to experiment with virtual machines (VMs) on Google Cloud to leverage more powerful hardware. Your code does not include any manual device placement and has not been wrapped in Estimator model-level abstraction. Which environment should you train your model on?

Options:

A.

AVM on Compute Engine and 1 TPU with all dependencies installed manually.

B.

AVM on Compute Engine and 8 GPUs with all dependencies installed manually.

C.

A Deep Learning VM with an n1-standard-2 machine and 1 GPU with all libraries pre-installed.

D.

A Deep Learning VM with more powerful CPU e2-highcpu-16 machines with all libraries pre-installed.

Question 51

You developed a Vertex Al ML pipeline that consists of preprocessing and training steps and each set of steps runs on a separate custom Docker image Your organization uses GitHub and GitHub Actions as CI/CD to run unit and integration tests You need to automate the model retraining workflow so that it can be initiated both manually and when a new version of the code is merged in the main branch You want to minimize the steps required to build the workflow while also allowing for maximum flexibility How should you configure the CI/CD workflow?

Options:

A.

Trigger a Cloud Build workflow to run tests build custom Docker images, push the images to Artifact Registry and launch the pipeline in Vertex Al Pipelines.

B.

Trigger GitHub Actions to run the tests launch a job on Cloud Run to build custom Docker images push the images to Artifact Registry and launch the pipeline in Vertex Al Pipelines.

C.

Trigger GitHub Actions to run the tests build custom Docker images push the images to Artifact Registry, and launch the pipeline in Vertex Al Pipelines.

D.

Trigger GitHub Actions to run the tests launch a Cloud Build workflow to build custom Dicker images, push the images to Artifact Registry, and launch the pipeline in Vertex Al Pipelines.

Question 52

You need to build an ML model for a social media application to predict whether a user’s submitted profile photo meets the requirements. The application will inform the user if the picture meets the requirements. How should you build a model to ensure that the application does not falsely accept a non-compliant picture?

Options:

A.

Use AutoML to optimize the model’s recall in order to minimize false negatives.

B.

Use AutoML to optimize the model’s F1 score in order to balance the accuracy of false positives and false negatives.

C.

Use Vertex AI Workbench user-managed notebooks to build a custom model that has three times as many examples of pictures that meet the profile photo requirements.

D.

Use Vertex AI Workbench user-managed notebooks to build a custom model that has three times as many examples of pictures that do not meet the profile photo requirements.

Question 53

You work for a manufacturing company. You need to train a custom image classification model to detect product detects at the end of an assembly line. Although your model is performing well, some images in your holdout set are consistently mislabeled with high confidence. You want to use Vertex Al to understand your models results. What should you do?

Options:

A.

Configure feature-based explanations by using sampled Shapley. Set number of feature permutations to the maximum value of 50.

B.

Create an index by using Vertex Al Matching Engine. Query the index with your mislabeled images

C.

Configure example-based explanations by using integrated gradients. Set visualization type to pixels, and set clip_percent_upperbound to 95.

D.

Configure example-based explanations. Specify the embedding output layer to be used for the latent space representation.

Question 54

You are building a real-time prediction engine that streams files which may contain Personally Identifiable Information (Pll) to Google Cloud. You want to use the Cloud Data Loss Prevention (DLP) API to scan the files. How should you ensure that the Pll is not accessible by unauthorized individuals?

Options:

A.

Stream all files to Google CloudT and then write the data to BigQuery Periodically conduct a bulk scan of the table using the DLP API.

B.

Stream all files to Google Cloud, and write batches of the data to BigQuery While the data is being written to BigQuery conduct a bulk scan of the data using the DLP API.

C.

Create two buckets of data Sensitive and Non-sensitive Write all data to the Non-sensitive bucket Periodically conduct a bulk scan of that bucket using the DLP API, and move the sensitive data to the Sensitive bucket

D.

Create three buckets of data: Quarantine, Sensitive, and Non-sensitive Write all data to the Quarantine bucket.

E.

Periodically conduct a bulk scan of that bucket using the DLP API, and move the data to either the Sensitive or Non-Sensitive bucket

Question 55

You recently deployed a model to a Vertex Al endpoint Your data drifts frequently so you have enabled request-response logging and created a Vertex Al Model Monitoring job. You have observed that your model is receiving higher traffic than expected. You need to reduce the model monitoring cost while continuing to quickly detect drift. What should you do?

Options:

A.

Replace the monitoring job with a DataFlow pipeline that uses TensorFlow Data Validation (TFDV).

B.

Replace the monitoring job with a custom SQL scnpt to calculate statistics on the features and predictions in BigQuery.

C.

Decrease the sample_rate parameter in the Randomsampleconfig of the monitoring job.

D.

Increase the monitor_interval parameter in the scheduieconfig of the monitoring job.

Question 56

You are working on a classification problem with time series data and achieved an area under the receiver operating characteristic curve (AUC ROC) value of 99% for training data after just a few experiments. You haven’t explored using any sophisticated algorithms or spent any time on hyperparameter tuning. What should your next step be to identify and fix the problem?

Options:

A.

Address the model overfitting by using a less complex algorithm.

B.

Address data leakage by applying nested cross-validation during model training.

C.

Address data leakage by removing features highly correlated with the target value.

D.

Address the model overfitting by tuning the hyperparameters to reduce the AUC ROC value.

Question 57

You are building a custom image classification model and plan to use Vertex Al Pipelines to implement the end-to-end training. Your dataset consists of images that need to be preprocessed before they can be used to train the model. The preprocessing steps include resizing the images, converting them to grayscale, and extracting features. You have already implemented some Python functions for the preprocessing tasks. Which components should you use in your pipeline'?

Options:

A.

B.

C.

Option C57

D.

Option D57

Question 58

You manage a team of data scientists who use a cloud-based backend system to submit training jobs. This system has become very difficult to administer, and you want to use a managed service instead. The data scientists you work with use many different frameworks, including Keras, PyTorch, theano, scikit-learn, and custom libraries. What should you do?

Options:

A.

Use the Vertex AI Training to submit training jobs using any framework.

B.

Configure Kubeflow to run on Google Kubernetes Engine and submit training jobs through TFJob.

C.

Create a library of VM images on Compute Engine, and publish these images on a centralized repository.

D.

Set up Slurm workload manager to receive jobs that can be scheduled to run on your cloud infrastructure.

Question 59

You have trained a model by using data that was preprocessed in a batch Dataflow pipeline Your use case requires real-time inference. You want to ensure that the data preprocessing logic is applied consistently between training and serving. What should you do?

Options:

A.

Perform data validation to ensure that the input data to the pipeline is the same format as the input data to the endpoint.

B.

Refactor the transformation code in the batch data pipeline so that it can be used outside of the pipeline Use the same code in the endpoint.

C.

Refactor the transformation code in the batch data pipeline so that it can be used outside of the pipeline Share this code with the end users of the endpoint.

D.

Batch the real-time requests by using a time window and then use the Dataflow pipeline to preprocess the batched requests. Send the preprocessed requests to the endpoint.

Question 60

You work for a hospital that wants to optimize how it schedules operations. You need to create a model that uses the relationship between the number of surgeries scheduled and beds used You want to predict how many beds will be needed for patients each day in advance based on the scheduled surgeries You have one year of data for the hospital organized in 365 rows

The data includes the following variables for each day

• Number of scheduled surgeries

• Number of beds occupied

• Date

You want to maximize the speed of model development and testing What should you do?

Options:

A.

Create a BigQuery table Use BigQuery ML to build a regression model, with number of beds as the target variable and number of scheduled surgeries and date features (such as day of week) as the predictors

B.

Create a BigQuery table Use BigQuery ML to build an ARIMA model, with number of beds as the target variable and date as the time variable.

C.

Create a Vertex Al tabular dataset Tram an AutoML regression model, with number of beds as the target variable and number of scheduled minor surgeries and date features (such as day of the week) as the predictors

D.

Create a Vertex Al tabular dataset Train a Vertex Al AutoML Forecasting model with number of beds as the target variable, number of scheduled surgeries as a covariate, and date as the time variable.

Question 61

You work at a large organization that recently decided to move their ML and data workloads to Google Cloud. The data engineering team has exported the structured data to a Cloud Storage bucket in Avro format. You need to propose a workflow that performs analytics, creates features, and hosts the features that your ML models use for online prediction How should you configure the pipeline?

Options:

A.

Ingest the Avro files into Cloud Spanner to perform analytics Use a Dataflow pipeline to create the features and store them in BigQuery for online prediction.

B.

Ingest the Avro files into BigQuery to perform analytics Use a Dataflow pipeline to create the features, and store them in Vertex Al Feature Store for online prediction.

C.

Ingest the Avro files into BigQuery to perform analytics Use BigQuery SQL to create features and store them in a separate BigQuery table for online prediction.

D.

Ingest the Avro files into Cloud Spanner to perform analytics. Use a Dataflow pipeline to create the features. and store them in Vertex Al Feature Store for online prediction.

Question 62

You are working on a system log anomaly detection model for a cybersecurity organization. You have developed the model using TensorFlow, and you plan to use it for real-time prediction. You need to create a Dataflow pipeline to ingest data via Pub/Sub and write the results to BigQuery. You want to minimize the serving latency as much as possible. What should you do?

Options:

A.

Containerize the model prediction logic in Cloud Run, which is invoked by Dataflow.

B.

Load the model directly into the Dataflow job as a dependency, and use it for prediction.

C.

Deploy the model to a Vertex AI endpoint, and invoke this endpoint in the Dataflow job.

D.

Deploy the model in a TFServing container on Google Kubernetes Engine, and invoke it in the Dataflow job.

Question 63

Your task is classify if a company logo is present on an image. You found out that 96% of a data does not include a logo. You are dealing with data imbalance problem. Which metric do you use to evaluate to model?

Options:

A.

F1 Score

B.

RMSE

C.

F Score with higher precision weighting than recall

D.

F Score with higher recall weighted than precision

Question 64

You are an ML engineer at a manufacturing company. You need to build a model that identifies defects in products based on images of the product taken at the end of the assembly line. You want your model to preprocess the images with lower computation to quickly extract features of defects in products. Which approach should you use to build the model?

Options:

A.

Reinforcement learning

B.

Recommender system

C.

Recurrent Neural Networks (RNN)

D.

Convolutional Neural Networks (CNN)

Question 65

You are developing an image recognition model using PyTorch based on ResNet50 architecture Your code is working fine on your local laptop on a small subsample. Your full dataset has 200k labeled images You want to quickly scale your training workload while minimizing cost. You plan to use 4 V100 GPUs What should you do?

Options:

A.

Create a Google Kubernetes Engine cluster with a node pool that has 4 V100 GPUs Prepare and submit a TFJob operator to this node pool.

B.

Configure a Compute Engine VM with all the dependencies that launches the training Tram your model with Vertex Al using a custom tier that contains the required GPUs.

C.

Create a Vertex Al Workbench user-managed notebooks instance with 4 V100 GPUs, and use it to tram your model.

D.

Package your code with Setuptools and use a pre-built container. Train your model with Vertex Al using a custom tier that contains the required GPUs.

Question 66

You developed a Python module by using Keras to train a regression model. You developed two model architectures, linear regression and deep neural network (DNN). within the same module. You are using the – raining_method argument to select one of the two methods, and you are using the Learning_rate-and num_hidden_layers arguments in the DNN. You plan to use Vertex Al's hypertuning service with a Budget to perform 100 trials. You want to identify the model architecture and hyperparameter values that minimize training loss and maximize model performance What should you do?

Options:

A.

Run one hypertuning job for 100 trials. Set num hidden_layers as a conditional hypetparameter based on its parent hyperparameter training_mothod. and set learning rate as a non-conditional hyperparameter

B.

Run two separate hypertuning jobs. a linear regression job for 50 trials, and a DNN job for 50 trials Compare their final performance on a

common validation set. and select the set of hyperparameters with the least training loss

C.

Run one hypertuning job for 100 trials Set num_hidden_layers and learning_rate as conditional hyperparameters based on their parent hyperparameter training method.

D.

Run one hypertuning job with training_method as the hyperparameter for 50 trials Select the architecture with the lowest training loss. and further hypertune It and its corresponding hyperparameters for 50 trials

Question 67

You work for an online travel agency that also sells advertising placements on its website to other companies.

You have been asked to predict the most relevant web banner that a user should see next. Security is

important to your company. The model latency requirements are 300ms@p99, the inventory is thousands of web banners, and your exploratory analysis has shown that navigation context is a good predictor. You want to Implement the simplest solution. How should you configure the prediction pipeline?

Options:

A.

Embed the client on the website, and then deploy the model on AI Platform Prediction.

B.

Embed the client on the website, deploy the gateway on App Engine, and then deploy the model on AI Platform Prediction.

C.

Embed the client on the website, deploy the gateway on App Engine, deploy the database on Cloud

Bigtable for writing and for reading the user’s navigation context, and then deploy the model on AI Platform Prediction.

D.

Embed the client on the website, deploy the gateway on App Engine, deploy the database on Memorystore for writing and for reading the user’s navigation context, and then deploy the model on Google Kubernetes Engine.

Question 68

You want to migrate a scikrt-learn classifier model to TensorFlow. You plan to train the TensorFlow classifier model using the same training set that was used to train the scikit-learn model and then compare the performances using a common test set. You want to use the Vertex Al Python SDK to manually log the evaluation metrics of each model and compare them based on their F1 scores and confusion matrices. How should you log the metrics?

Options:

A.

Option A68

B.

Option B68

C.

Option C68

D.

Option D68

Question 69

You work for a retail company. You have created a Vertex Al forecast model that produces monthly item sales predictions. You want to quickly create a report that will help to explain how the model calculates the predictions. You have one month of recent actual sales data that was not included in the training dataset. How should you generate data for your report?

Options:

A.

Create a batch prediction job by using the actual sales data Compare the predictions to the actuals in the report.

B.

Create a batch prediction job by using the actual sates data and configure the job settings to generate feature attributions. Compare the results in the report.

C.

Generate counterfactual examples by using the actual sales data Create a batch prediction job using the

actual sales data and the counterfactual examples Compare the results in the report.

D.

Train another model by using the same training dataset as the original and exclude some columns. Using the actual sales data create one batch prediction job by using the new model and another one with the original model Compare the two sets of predictions in the report.

Question 70

You work for a manufacturing company. You need to train a custom image classification model to detect product defects at the end of an assembly line Although your model is performing well some images in your holdout set are consistently mislabeled with high confidence You want to use Vertex Al to understand your model's results What should you do?

Options:

A.

B.

Option B70

C.

D.

Question 71

You are an ML engineer at a mobile gaming company. A data scientist on your team recently trained a TensorFlow model, and you are responsible for deploying this model into a mobile application. You discover that the inference latency of the current model doesn’t meet production requirements. You need to reduce the inference time by 50%, and you are willing to accept a small decrease in model accuracy in order to reach the latency requirement. Without training a new model, which model optimization technique for reducing latency should you try first?

Options:

A.

Weight pruning

B.

Dynamic range quantization

C.

Model distillation

D.

Dimensionality reduction

Question 72

You are profiling the performance of your TensorFlow model training time and notice a performance issue caused by inefficiencies in the input data pipeline for a single 5 terabyte CSV file dataset on Cloud Storage. You need to optimize the input pipeline performance. Which action should you try first to increase the efficiency of your pipeline?

Options:

A.

Preprocess the input CSV file into a TFRecord file.

B.

Randomly select a 10 gigabyte subset of the data to train your model.

C.

Split into multiple CSV files and use a parallel interleave transformation.

D.

Set the reshuffle_each_iteration parameter to true in the tf.data.Dataset.shuffle method.

Question 73

You work at an ecommerce startup. You need to create a customer churn prediction model Your company's recent sales records are stored in a BigQuery table You want to understand how your initial model is making predictions. You also want to iterate on the model as quickly as possible while minimizing cost How should you build your first model?

Options:

A.

Export the data to a Cloud Storage Bucket Load the data into a pandas DataFrame on Vertex Al Workbench and train a logistic regression model with scikit-learn.

B.

Create a tf.data.Dataset by using the TensorFlow BigQueryChent Implement a deep neural network in TensorFlow.

C.

Prepare the data in BigQuery and associate the data with a Vertex Al dataset Create an

AutoMLTabuiarTrainmgJob to train a classification model.

D.

Export the data to a Cloud Storage Bucket Create tf. data. Dataset to read the data from Cloud Storage Implement a deep neural network in TensorFlow.

Question 74

You are an ML engineer at a bank. You have developed a binary classification model using AutoML Tables to predict whether a customer will make loan payments on time. The output is used to approve or reject loan requests. One customer’s loan request has been rejected by your model, and the bank’s risks department is asking you to provide the reasons that contributed to the model’s decision. What should you do?

Options:

A.

Use local feature importance from the predictions.

B.

Use the correlation with target values in the data summary page.

C.

Use the feature importance percentages in the model evaluation page.

D.

Vary features independently to identify the threshold per feature that changes the classification.

Question 75

You are developing an ML model intended to classify whether X-Ray images indicate bone fracture risk. You have trained on Api Resnet architecture on Vertex AI using a TPU as an accelerator, however you are unsatisfied with the trainning time and use memory usage. You want to quickly iterate your training code but make minimal changes to the code. You also want to minimize impact on the models accuracy. What should you do?

Options:

A.

Configure your model to use bfloat16 instead float32

B.

Reduce the global batch size from 1024 to 256

C.

Reduce the number of layers in the model architecture

D.

Reduce the dimensions of the images used un the model

Question 76

You work for a retail company. You have been tasked with building a model to determine the probability of churn for each customer. You need the predictions to be interpretable so the results can be used to develop marketing campaigns that target at-risk customers. What should you do?

Options:

A.

Build a random forest regression model in a Vertex Al Workbench notebook instance Configure the model to generate feature importance’s after the model is trained.

B.

Build an AutoML tabular regression model Configure the model to generate explanations when it makes predictions.

C.

Build a custom TensorFlow neural network by using Vertex Al custom training Configure the model to generate explanations when it makes predictions.

D.

Build a random forest classification model in a Vertex Al Workbench notebook instance Configure the model to generate feature importance’s after the model is trained.

Question 77

Your data science team needs to rapidly experiment with various features, model architectures, and hyperparameters. They need to track the accuracy metrics for various experiments and use an API to query the metrics over time. What should they use to track and report their experiments while minimizing manual effort?

Options:

A.

Use Kubeflow Pipelines to execute the experiments Export the metrics file, and query the results using the Kubeflow Pipelines API.

B.

Use Al Platform Training to execute the experiments Write the accuracy metrics to BigQuery, and query the results using the BigQueryAPI.

C.

Use Al Platform Training to execute the experiments Write the accuracy metrics to Cloud Monitoring, and query the results using the Monitoring API.

D.

Use Al Platform Notebooks to execute the experiments. Collect the results in a shared Google Sheets file, and query the results using the Google Sheets API

Question 78

You lead a data science team at a large international corporation. Most of the models your team trains are large-scale models using high-level TensorFlow APIs on AI Platform with GPUs. Your team usually

takes a few weeks or months to iterate on a new version of a model. You were recently asked to review your team’s spending. How should you reduce your Google Cloud compute costs without impacting the model’s performance?

Options:

A.

Use AI Platform to run distributed training jobs with checkpoints.

B.

Use AI Platform to run distributed training jobs without checkpoints.

C.

Migrate to training with Kuberflow on Google Kubernetes Engine, and use preemptible VMs with checkpoints.

D.

Migrate to training with Kuberflow on Google Kubernetes Engine, and use preemptible VMs without checkpoints.

Question 79

You are training a TensorFlow model on a structured data set with 100 billion records stored in several CSV files. You need to improve the input/output execution performance. What should you do?

Options:

A.

Load the data into BigQuery and read the data from BigQuery.

B.

Load the data into Cloud Bigtable, and read the data from Bigtable

C.

Convert the CSV files into shards of TFRecords, and store the data in Cloud Storage

D.

Convert the CSV files into shards of TFRecords, and store the data in the Hadoop Distributed File System (HDFS)

Question 80

You trained a text classification model. You have the following SignatureDefs:

Question # 80

What is the correct way to write the predict request?

Options:

A.

data = json.dumps({"signature_name": "serving_default'\ "instances": [fab', 'be1, 'cd']]})

B.

data = json dumps({"signature_name": "serving_default"! "instances": [['a', 'b', "c", 'd', 'e', 'f']]})

C.

data = json.dumps({"signature_name": "serving_default, "instances": [['a', 'b\ 'c'1, [d\ 'e\ T]]})

D.

data = json dumps({"signature_name": f,serving_default", "instances": [['a', 'b'], [c\ 'd'], ['e\ T]]})

Question 81

You work for a delivery company. You need to design a system that stores and manages features such as parcels delivered and truck locations over time. The system must retrieve the features with low latency and feed those features into a model for online prediction. The data science team will retrieve historical data at a specific point in time for model training. You want to store the features with minimal effort. What should you do?

Options:

A.

Store features in Bigtable as key/value data.

B.

Store features in Vertex Al Feature Store.

C.

Store features as a Vertex Al dataset and use those features to tram the models hosted in Vertex Al endpoints.

D.

Store features in BigQuery timestamp partitioned tables, and use the BigQuery Storage Read API to serve the features.

Question 82

You developed a custom model by using Vertex Al to forecast the sales of your company s products based on historical transactional data You anticipate changes in the feature distributions and the correlations between the features in the near future You also expect to receive a large volume of prediction requests You plan to use Vertex Al Model Monitoring for drift detection and you want to minimize the cost. What should you do?

Options:

A.

Use the features for monitoring Set a monitoring- frequency value that is higher than the default.

B.

Use the features for monitoring Set a prediction-sampling-rare value that is closer to 1 than 0.

C.

Use the features and the feature attributions for monitoring. Set a monitoring-frequency value that is lower than the default.

D.

Use the features and the feature attributions for monitoring Set a prediction-sampling-rate value that is closer to 0 than 1.

Question 83

You are an ML engineer in the contact center of a large enterprise. You need to build a sentiment analysis tool that predicts customer sentiment from recorded phone conversations. You need to identify the best approach to building a model while ensuring that the gender, age, and cultural differences of the customers who called the contact center do not impact any stage of the model development pipeline and results. What should you do?

Options:

A.

Extract sentiment directly from the voice recordings

B.

Convert the speech to text and build a model based on the words

C.

Convert the speech to text and extract sentiments based on the sentences

D.

Convert the speech to text and extract sentiment using syntactical analysis

Question 84

You are developing a mode! to detect fraudulent credit card transactions. You need to prioritize detection because missing even one fraudulent transaction could severely impact the credit card holder. You used AutoML to tram a model on users' profile information and credit card transaction data. After training the initial model, you notice that the model is failing to detect many fraudulent transactions. How should you adjust the training parameters in AutoML to improve model performance?

Choose 2 answers

Options:

A.

Increase the score threshold.

B.

Decrease the score threshold.

C.

Add more positive examples to the training set.

D.

Add more negative examples to the training set.

E.

Reduce the maximum number of node hours for training.

Question 85

You are an ML engineer at a travel company. You have been researching customers’ travel behavior for many years, and you have deployed models that predict customers’ vacation patterns. You have observed that customers’ vacation destinations vary based on seasonality and holidays; however, these seasonal variations are similar across years. You want to quickly and easily store and compare the model versions and performance statistics across years. What should you do?

Options:

A.

Store the performance statistics in Cloud SQL. Query that database to compare the performance statistics across the model versions.

B.

Create versions of your models for each season per year in Vertex AI. Compare the performance statistics across the models in the Evaluate tab of the Vertex AI UI.

C.

Store the performance statistics of each pipeline run in Kubeflow under an experiment for each season per year. Compare the results across the experiments in the Kubeflow UI.

D.

Store the performance statistics of each version of your models using seasons and years as events in Vertex ML Metadata. Compare the results across the slices.

Page: 1 / 29
Total 285 questions