Winter Sale- Special Discount Limited Time 65% Offer - Ends in 0d 00h 00m 00s - Coupon code: netdisc

Databricks Databricks-Generative-AI-Engineer-Associate Databricks Certified Generative AI Engineer Associate Exam Practice Test

Page: 1 / 5
Total 45 questions

Databricks Certified Generative AI Engineer Associate Questions and Answers

Question 1

A Generative Al Engineer is creating an LLM-based application. The documents for its retriever have been chunked to a maximum of 512 tokens each. The Generative Al Engineer knows that cost and latency are more important than quality for this application. They have several context length levels to choose from.

Which will fulfill their need?

Options:

A.

context length 514; smallest model is 0.44GB and embedding dimension 768

B.

context length 2048: smallest model is 11GB and embedding dimension 2560

C.

context length 32768: smallest model is 14GB and embedding dimension 4096

D.

context length 512: smallest model is 0.13GB and embedding dimension 384

Question 2

A Generative AI Engineer is creating an agent-based LLM system for their favorite monster truck team. The system can answer text based questions about the monster truck team, lookup event dates via an API call, or query tables on the team’s latest standings.

How could the Generative AI Engineer best design these capabilities into their system?

Options:

A.

Ingest PDF documents about the monster truck team into a vector store and query it in a RAG architecture.

B.

Write a system prompt for the agent listing available tools and bundle it into an agent system that runs a number of calls to solve a query.

C.

Instruct the LLM to respond with “RAG”, “API”, or “TABLE” depending on the query, then use text parsing and conditional statements to resolve the query.

D.

Build a system prompt with all possible event dates and table information in the system prompt. Use a RAG architecture to lookup generic text questions and otherwise leverage the information in the system prompt.

Question 3

A Generative Al Engineer is tasked with developing an application that is based on an open source large language model (LLM). They need a foundation LLM with a large context window.

Which model fits this need?

Options:

A.

DistilBERT

B.

MPT-30B

C.

Llama2-70B

D.

DBRX

Question 4

A Generative Al Engineer has successfully ingested unstructured documents and chunked them by document sections. They would like to store the chunks in a Vector Search index. The current format of the dataframe has two columns: (i) original document file name (ii) an array of text chunks for each document.

What is the most performant way to store this dataframe?

Options:

A.

Split the data into train and test set, create a unique identifier for each document, then save to a Delta table

B.

Flatten the dataframe to one chunk per row, create a unique identifier for each row, and save to a Delta table

C.

First create a unique identifier for each document, then save to a Delta table

D.

Store each chunk as an independent JSON file in Unity Catalog Volume. For each JSON file, the key is the document section name and the value is the array of text chunks for that section

Question 5

A Generative AI Engineer has created a RAG application which can help employees retrieve answers from an internal knowledge base, such as Confluence pages or Google Drive. The prototype application is now working with some positive feedback from internal company testers. Now the Generative Al Engineer wants to formally evaluate the system’s performance and understand where to focus their efforts to further improve the system.

How should the Generative AI Engineer evaluate the system?

Options:

A.

Use cosine similarity score to comprehensively evaluate the quality of the final generated answers.

B.

Curate a dataset that can test the retrieval and generation components of the system separately. Use MLflow’s built in evaluation metrics to perform the evaluation on the retrieval and generation components.

C.

Benchmark multiple LLMs with the same data and pick the best LLM for the job.

D.

Use an LLM-as-a-judge to evaluate the quality of the final answers generated.

Question 6

A Generative Al Engineer is creating an LLM system that will retrieve news articles from the year 1918 and related to a user's query and summarize them. The engineer has noticed that the summaries are generated well but often also include an explanation of how the summary was generated, which is undesirable.

Which change could the Generative Al Engineer perform to mitigate this issue?

Options:

A.

Split the LLM output by newline characters to truncate away the summarization explanation.

B.

Tune the chunk size of news articles or experiment with different embedding models.

C.

Revisit their document ingestion logic, ensuring that the news articles are being ingested properly.

D.

Provide few shot examples of desired output format to the system and/or user prompt.

Question 7

When developing an LLM application, it’s crucial to ensure that the data used for training the model complies with licensing requirements to avoid legal risks.

Which action is NOT appropriate to avoid legal risks?

Options:

A.

Reach out to the data curators directly before you have started using the trained model to let them know.

B.

Use any available data you personally created which is completely original and you can decide what license to use.

C.

Only use data explicitly labeled with an open license and ensure the license terms are followed.

D.

Reach out to the data curators directly after you have started using the trained model to let them know.

Question 8

A Generative Al Engineer interfaces with an LLM with prompt/response behavior that has been trained on customer calls inquiring about product availability. The LLM is designed to output “In Stock” if the product is available or only the term “Out of Stock” if not.

Which prompt will work to allow the engineer to respond to call classification labels correctly?

Options:

A.

Respond with “In Stock” if the customer asks for a product.

B.

You will be given a customer call transcript where the customer asks about product availability. The outputs are either “In Stock” or “Out of Stock”. Format the output in JSON, for example: {“call_id”: “123”, “label”: “In Stock”}.

C.

Respond with “Out of Stock” if the customer asks for a product.

D.

You will be given a customer call transcript where the customer inquires about product availability. Respond with “In Stock” if the product is available or “Out of Stock” if not.

Question 9

A team wants to serve a code generation model as an assistant for their software developers. It should support multiple programming languages. Quality is the primary objective.

Which of the Databricks Foundation Model APIs, or models available in the Marketplace, would be the best fit?

Options:

A.

Llama2-70b

B.

BGE-large

C.

MPT-7b

D.

CodeLlama-34B

Question 10

A Generative AI Engineer is creating an LLM-powered application that will need access to up-to-date news articles and stock prices.

The design requires the use of stock prices which are stored in Delta tables and finding the latest relevant news articles by searching the internet.

How should the Generative AI Engineer architect their LLM system?

Options:

A.

Use an LLM to summarize the latest news articles and lookup stock tickers from the summaries to find stock prices.

B.

Query the Delta table for volatile stock prices and use an LLM to generate a search query to investigate potential causes of the stock volatility.

C.

Download and store news articles and stock price information in a vector store. Use a RAG architecture to retrieve and generate at runtime.

D.

Create an agent with tools for SQL querying of Delta tables and web searching, provide retrieved values to an LLM for generation of response.

Question 11

A Generative AI Engineer is tasked with deploying an application that takes advantage of a custom MLflow Pyfunc model to return some interim results.

How should they configure the endpoint to pass the secrets and credentials?

Options:

A.

Use spark.conf.set ()

B.

Pass variables using the Databricks Feature Store API

C.

Add credentials using environment variables

D.

Pass the secrets in plain text

Question 12

Which indicator should be considered to evaluate the safety of the LLM outputs when qualitatively assessing LLM responses for a translation use case?

Options:

A.

The ability to generate responses in code

B.

The similarity to the previous language

C.

The latency of the response and the length of text generated

D.

The accuracy and relevance of the responses

Question 13

A Generative Al Engineer is building a RAG application that answers questions about internal documents for the company SnoPen AI.

The source documents may contain a significant amount of irrelevant content, such as advertisements, sports news, or entertainment news, or content about other companies.

Which approach is advisable when building a RAG application to achieve this goal of filtering irrelevant information?

Options:

A.

Keep all articles because the RAG application needs to understand non-company content to avoid answering questions about them.

B.

Include in the system prompt that any information it sees will be about SnoPenAI, even if no data filtering is performed.

C.

Include in the system prompt that the application is not supposed to answer any questions unrelated to SnoPen Al.

D.

Consolidate all SnoPen AI related documents into a single chunk in the vector database.

Page: 1 / 5
Total 45 questions