New Year Special Limited Time Flat 70% Discount offer - Ends in 0d 00h 00m 00s - Coupon code: 70spcl

Databricks Databricks-Certified-Professional-Data-Engineer Databricks Certified Data Engineer Professional Exam Exam Practice Test

Page: 1 / 12
Total 120 questions

Databricks Certified Data Engineer Professional Exam Questions and Answers

Question 1

What is a method of installing a Python package scoped at the notebook level to all nodes in the currently active cluster?

Options:

A.

Use &Pip install in a notebook cell

B.

Run source env/bin/activate in a notebook setup script

C.

Install libraries from PyPi using the cluster UI

D.

Use &sh install in a notebook cell

Question 2

The data engineer team is configuring environment for development testing, and production before beginning migration on a new data pipeline. The team requires extensive testing on both the code and data resulting from code execution, and the team want to develop and test against similar production data as possible.

A junior data engineer suggests that production data can be mounted to the development testing environments, allowing pre production code to execute against production data. Because all users have

Admin privileges in the development environment, the junior data engineer has offered to configure permissions and mount this data for the team.

Which statement captures best practices for this situation?

Options:

A.

Because access to production data will always be verified using passthrough credentials it is safe to mount data to any Databricks development environment.

B.

All developer, testing and production code and data should exist in a single unified workspace; creating separate environments for testing and development further reduces risks.

C.

In environments where interactive code will be executed, production data should only be accessible with read permissions; creating isolated databases for each environment further reduces risks.

D.

Because delta Lake versions all data and supports time travel, it is not possible for user error or malicious actors to permanently delete production data, as such it is generally safe to mount production data anywhere.

Question 3

A data engineer is configuring a pipeline that will potentially see late-arriving, duplicate records.

In addition to de-duplicating records within the batch, which of the following approaches allows the data engineer to deduplicate data against previously processed records as it is inserted into a Delta table?

Options:

A.

Set the configuration delta.deduplicate = true.

B.

VACUUM the Delta table after each batch completes.

C.

Perform an insert-only merge with a matching condition on a unique key.

D.

Perform a full outer join on a unique key and overwrite existing data.

E.

Rely on Delta Lake schema enforcement to prevent duplicate records.

Question 4

The business reporting tem requires that data for their dashboards be updated every hour. The total processing time for the pipeline that extracts transforms and load the data for their pipeline runs in 10 minutes.

Assuming normal operating conditions, which configuration will meet their service-level agreement requirements with the lowest cost?

Options:

A.

Schedule a jo to execute the pipeline once and hour on a dedicated interactive cluster.

B.

Schedule a Structured Streaming job with a trigger interval of 60 minutes.

C.

Schedule a job to execute the pipeline once hour on a new job cluster.

D.

Configure a job that executes every time new data lands in a given directory.

Question 5

The business intelligence team has a dashboard configured to track various summary metrics for retail stories. This includes total sales for the previous day alongside totals and averages for a variety of time periods. The fields required to populate this dashboard have the following schema:

For Demand forecasting, the Lakehouse contains a validated table of all itemized sales updated incrementally in near real-time. This table named products_per_order, includes the following fields:

Because reporting on long-term sales trends is less volatile, analysts using the new dashboard only require data to be refreshed once daily. Because the dashboard will be queried interactively by many users throughout a normal business day, it should return results quickly and reduce total compute associated with each materialization.

Which solution meets the expectations of the end users while controlling and limiting possible costs?

Options:

A.

Use the Delta Cache to persists the products_per_order table in memory to quickly the dashboard with each query.

B.

Populate the dashboard by configuring a nightly batch job to save the required to quickly update the dashboard with each query.

C.

Use Structure Streaming to configure a live dashboard against the products_per_order table within a Databricks notebook.

D.

Define a view against the products_per_order table and define the dashboard against this view.

Question 6

A junior member of the data engineering team is exploring the language interoperability of Databricks notebooks. The intended outcome of the below code is to register a view of all sales that occurred in countries on the continent of Africa that appear in the geo_lookup table.

Before executing the code, running SHOW TABLES on the current database indicates the database contains only two tables: geo_lookup and sales.

Question # 6

Which statement correctly describes the outcome of executing these command cells in order in an interactive notebook?

Options:

A.

Both commands will succeed. Executing show tables will show that countries at and sales at have been registered as views.

B.

Cmd 1 will succeed. Cmd 2 will search all accessible databases for a table or view named countries af: if this entity exists, Cmd 2 will succeed.

C.

Cmd 1 will succeed and Cmd 2 will fail, countries at will be a Python variable representing a PySpark DataFrame.

D.

Both commands will fail. No new variables, tables, or views will be created.

E.

Cmd 1 will succeed and Cmd 2 will fail, countries at will be a Python variable containing a list of strings.

Question 7

An upstream system is emitting change data capture (CDC) logs that are being written to a cloud object storage directory. Each record in the log indicates the change type (insert, update, or delete) and the values for each field after the change. The source table has a primary key identified by the field pk_id.

For auditing purposes, the data governance team wishes to maintain a full record of all values that have ever been valid in the source system. For analytical purposes, only the most recent value for each record needs to be recorded. The Databricks job to ingest these records occurs once per hour, but each individual record may have changed multiple times over the course of an hour.

Which solution meets these requirements?

Options:

A.

Create a separate history table for each pk_id resolve the current state of the table by running a union all filtering the history tables for the most recent state.

B.

Use merge into to insert, update, or delete the most recent entry for each pk_id into a bronze table, then propagate all changes throughout the system.

C.

Iterate through an ordered set of changes to the table, applying each in turn; rely on Delta Lake's versioning ability to create an audit log.

D.

Use Delta Lake's change data feed to automatically process CDC data from an external system, propagating all changes to all dependent tables in the Lakehouse.

E.

Ingest all log information into a bronze table; use merge into to insert, update, or delete the most recent entry for each pk_id into a silver table to recreate the current table state.

Question 8

Which distribution does Databricks support for installing custom Python code packages?

Options:

A.

sbt

B.

CRAN

C.

CRAM

D.

nom

E.

Wheels

F.

jars

Question 9

The data science team has created and logged a production using MLFlow. The model accepts a list of column names and returns a new column of type DOUBLE.

The following code correctly imports the production model, load the customer table containing the customer_id key column into a Dataframe, and defines the feature columns needed for the model.

Question # 9

Which code block will output DataFrame with the schema'' customer_id LONG, predictions DOUBLE''?

Options:

A.

Model, predict (df, columns)

B.

Df, map (lambda k:midel (x [columns]) ,select (''customer_id predictions'')

C.

Df. Select (''customer_id''.

Model (''columns) alias (''predictions'')

D.

Df.apply(model, columns). Select (''customer_id, prediction''

Question 10

A CHECK constraint has been successfully added to the Delta table named activity_details using the following logic:

A batch job is attempting to insert new records to the table, including a record where latitude = 45.50 and longitude = 212.67.

Which statement describes the outcome of this batch insert?

Options:

A.

The write will fail when the violating record is reached; any records previously processed will be recorded to the target table.

B.

The write will fail completely because of the constraint violation and no records will be inserted into the target table.

C.

The write will insert all records except those that violate the table constraints; the violating records will be recorded to a quarantine table.

D.

The write will include all records in the target table; any violations will be indicated in the boolean column named valid_coordinates.

E.

The write will insert all records except those that violate the table constraints; the violating records will be reported in a warning log.

Question 11

A table is registered with the following code:

Both users and orders are Delta Lake tables. Which statement describes the results of querying recent_orders?

Options:

A.

All logic will execute at query time and return the result of joining the valid versions of the source tables at the time the query finishes.

B.

All logic will execute when the table is defined and store the result of joining tables to the DBFS; this stored data will be returned when the table is queried.

C.

Results will be computed and cached when the table is defined; these cached results will incrementally update as new records are inserted into source tables.

D.

All logic will execute at query time and return the result of joining the valid versions of the source tables at the time the query began.

E.

The versions of each source table will be stored in the table transaction log; query results will be saved to DBFS with each query.

Question 12

The data science team has created and logged a production model using MLflow. The following code correctly imports and applies the production model to output the predictions as a new DataFrame named preds with the schema "customer_id LONG, predictions DOUBLE, date DATE".

Question # 12

The data science team would like predictions saved to a Delta Lake table with the ability to compare all predictions across time. Churn predictions will be made at most once per day.

Which code block accomplishes this task while minimizing potential compute costs?

Options:

A.

preds.write.mode("append").saveAsTable("churn_preds")

B.

preds.write.format("delta").save("/preds/churn_preds")

C)

Option B12

D)

Option B12

E)

Option B12C.

Option A

D.

Option B

E.

Option C

F.

Option D

G.

Option E

Question 13

A Spark job is taking longer than expected. Using the Spark UI, a data engineer notes that the Min, Median, and Max Durations for tasks in a particular stage show the minimum and median time to complete a task as roughly the same, but the max duration for a task to be roughly 100 times as long as the minimum.

Which situation is causing increased duration of the overall job?

Options:

A.

Task queueing resulting from improper thread pool assignment.

B.

Spill resulting from attached volume storage being too small.

C.

Network latency due to some cluster nodes being in different regions from the source data

D.

Skew caused by more data being assigned to a subset of spark-partitions.

E.

Credential validation errors while pulling data from an external system.

Question 14

A Delta Lake table representing metadata about content from user has the following schema:

Based on the above schema, which column is a good candidate for partitioning the Delta Table?

Options:

A.

Date

B.

Post_id

C.

User_id

D.

Post_time

Question 15

Which statement describes integration testing?

Options:

A.

Validates interactions between subsystems of your application

B.

Requires an automated testing framework

C.

Requires manual intervention

D.

Validates an application use case

E.

Validates behavior of individual elements of your application

Question 16

Spill occurs as a result of executing various wide transformations. However, diagnosing spill requires one to proactively look for key indicators.

Where in the Spark UI are two of the primary indicators that a partition is spilling to disk?

Options:

A.

Stage’s detail screen and Executor’s files

B.

Stage’s detail screen and Query’s detail screen

C.

Driver’s and Executor’s log files

D.

Executor’s detail screen and Executor’s log files

Question 17

A Delta table of weather records is partitioned by date and has the below schema:

date DATE, device_id INT, temp FLOAT, latitude FLOAT, longitude FLOAT

To find all the records from within the Arctic Circle, you execute a query with the below filter:

latitude > 66.3

Which statement describes how the Delta engine identifies which files to load?

Options:

A.

All records are cached to an operational database and then the filter is applied

B.

The Parquet file footers are scanned for min and max statistics for the latitude column

C.

All records are cached to attached storage and then the filter is applied

D.

The Delta log is scanned for min and max statistics for the latitude column

E.

The Hive metastore is scanned for min and max statistics for the latitude column

Question 18

A small company based in the United States has recently contracted a consulting firm in India to implement several new data engineering pipelines to power artificial intelligence applications. All the company's data is stored in regional cloud storage in the United States.

The workspace administrator at the company is uncertain about where the Databricks workspace used by the contractors should be deployed.

Assuming that all data governance considerations are accounted for, which statement accurately informs this decision?

Options:

A.

Databricks runs HDFS on cloud volume storage; as such, cloud virtual machines must be deployed in the region where the data is stored.

B.

Databricks workspaces do not rely on any regional infrastructure; as such, the decision should be made based upon what is most convenient for the workspace administrator.

C.

Cross-region reads and writes can incur significant costs and latency; whenever possible, compute should be deployed in the same region the data is stored.

D.

Databricks leverages user workstations as the driver during interactive development; as such, users should always use a workspace deployed in a region they are physically near.

E.

Databricks notebooks send all executable code from the user's browser to virtual machines over the open internet; whenever possible, choosing a workspace region near the end users is the most secure.

Question 19

An external object storage container has been mounted to the location /mnt/finance_eda_bucket.

The following logic was executed to create a database for the finance team:

After the database was successfully created and permissions configured, a member of the finance team runs the following code:

If all users on the finance team are members of the finance group, which statement describes how the tx_sales table will be created?

Options:

A.

A logical table will persist the query plan to the Hive Metastore in the Databricks control plane.

B.

An external table will be created in the storage container mounted to /mnt/finance eda bucket.

C.

A logical table will persist the physical plan to the Hive Metastore in the Databricks control plane.

D.

An managed table will be created in the storage container mounted to /mnt/finance eda bucket.

E.

A managed table will be created in the DBFS root storage container.

Question 20

A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFrame df. The pipeline needs to calculate the average humidity and average temperature for each non-overlapping five-minute interval. Events are recorded once per minute per device.

Streaming DataFrame df has the following schema:

"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"

Code block:

Choose the response that correctly fills in the blank within the code block to complete this task.

Options:

A.

to_interval("event_time", "5 minutes").alias("time")

B.

window("event_time", "5 minutes").alias("time")

C.

"event_time"

D.

window("event_time", "10 minutes").alias("time")

E.

lag("event_time", "10 minutes").alias("time")

Question 21

The data governance team is reviewing user for deleting records for compliance with GDPR. The following logic has been implemented to propagate deleted requests from the user_lookup table to the user aggregate table.

Question # 21

Assuming that user_id is a unique identifying key and that all users have requested deletion have been removed from the user_lookup table, which statement describes whether successfully executing the above logic guarantees that the records to be deleted from the user_aggregates table are no longer accessible and why?

Options:

A.

No: files containing deleted records may still be accessible with time travel until a BACUM command is used to remove invalidated data files.

B.

Yes: Delta Lake ACID guarantees provide assurance that the DELETE command successed fully and permanently purged these records.

C.

No: the change data feed only tracks inserts and updates not deleted records.

D.

No: the Delta Lake DELETE command only provides ACID guarantees when combined with the MERGE INTO command

Question 22

The data governance team has instituted a requirement that all tables containing Personal Identifiable Information (PH) must be clearly annotated. This includes adding column comments, table comments, and setting the custom table property "contains_pii" = true.

The following SQL DDL statement is executed to create a new table:

Which command allows manual confirmation that these three requirements have been met?

Options:

A.

DESCRIBE EXTENDED dev.pii test

B.

DESCRIBE DETAIL dev.pii test

C.

SHOW TBLPROPERTIES dev.pii test

D.

DESCRIBE HISTORY dev.pii test

E.

SHOW TABLES dev

Question 23

Which is a key benefit of an end-to-end test?

Options:

A.

It closely simulates real world usage of your application.

B.

It pinpoint errors in the building blocks of your application.

C.

It provides testing coverage for all code paths and branches.

D.

It makes it easier to automate your test suite

Question 24

A table in the Lakehouse named customer_churn_params is used in churn prediction by the machine learning team. The table contains information about customers derived from a number of upstream sources. Currently, the data engineering team populates this table nightly by overwriting the table with the current valid values derived from upstream data sources.

The churn prediction model used by the ML team is fairly stable in production. The team is only interested in making predictions on records that have changed in the past 24 hours.

Which approach would simplify the identification of these changed records?

Options:

A.

Apply the churn model to all rows in the customer_churn_params table, but implement logic to perform an upsert into the predictions table that ignores rows where predictions have not changed.

B.

Convert the batch job to a Structured Streaming job using the complete output mode; configure a Structured Streaming job to read from the customer_churn_params table and incrementally predict against the churn model.

C.

Calculate the difference between the previous model predictions and the current customer_churn_params on a key identifying unique customers before making new predictions; only make predictions on those customers not in the previous predictions.

D.

Modify the overwrite logic to include a field populated by calling spark.sql.functions.current_timestamp() as data are being written; use this field to identify records written on a particular date.

E.

Replace the current overwrite logic with a merge statement to modify only those records that have changed; write logic to make predictions on the changed records identified by the change data feed.

Question 25

Which statement describes the default execution mode for Databricks Auto Loader?

Options:

A.

New files are identified by listing the input directory; new files are incrementally and idempotently loaded into the target Delta Lake table.

B.

Cloud vendor-specific queue storage and notification services are configured to track newly arriving files; new files are incrementally and impotently into the target Delta Lake table.

C.

Webhook trigger Databricks job to run anytime new data arrives in a source directory; new data automatically merged into target tables using rules inferred from the data.

D.

New files are identified by listing the input directory; the target table is materialized by directory querying all valid files in the source directory.

Question 26

A team of data engineer are adding tables to a DLT pipeline that contain repetitive expectations for many of the same data quality checks.

One member of the team suggests reusing these data quality rules across all tables defined for this pipeline.

What approach would allow them to do this?

Options:

A.

Maintain data quality rules in a Delta table outside of this pipeline’s target schema, providing the schema name as a pipeline parameter.

B.

Use global Python variables to make expectations visible across DLT notebooks included in the same pipeline.

C.

Add data quality constraints to tables in this pipeline using an external job with access to pipeline configuration files.

D.

Maintain data quality rules in a separate Databricks notebook that each DLT notebook of file.

Question 27

A user new to Databricks is trying to troubleshoot long execution times for some pipeline logic they are working on. Presently, the user is executing code cell-by-cell, using display() calls to confirm code is producing the logically correct results as new transformations are added to an operation. To get a measure of average time to execute, the user is running each cell multiple times interactively.

Which of the following adjustments will get a more accurate measure of how code is likely to perform in production?

Options:

A.

Scala is the only language that can be accurately tested using interactive notebooks; because the best performance is achieved by using Scala code compiled to JARs. all PySpark and Spark SQL logic should be refactored.

B.

The only way to meaningfully troubleshoot code execution times in development notebooks Is to use production-sized data and production-sized clusters with Run All execution.

C.

Production code development should only be done using an IDE; executing code against a local build of open source Spark and Delta Lake will provide the most accurate benchmarks for how code will perform in production.

D.

Calling display () forces a job to trigger, while many transformations will only add to the logical query plan; because of caching, repeated execution of the same logic does not provide meaningful results.

E.

The Jobs Ul should be leveraged to occasionally run the notebook as a job and track execution time during incremental code development because Photon can only be enabled on clusters launched for scheduled jobs.

Question 28

A junior data engineer is working to implement logic for a Lakehouse table named silver_device_recordings. The source data contains 100 unique fields in a highly nested JSON structure.

The silver_device_recordings table will be used downstream for highly selective joins on a number of fields, and will also be leveraged by the machine learning team to filter on a handful of relevant fields, in total, 15 fields have been identified that will often be used for filter and join logic.

The data engineer is trying to determine the best approach for dealing with these nested fields before declaring the table schema.

Which of the following accurately presents information about Delta Lake and Databricks that may Impact their decision-making process?

Options:

A.

Because Delta Lake uses Parquet for data storage, Dremel encoding information for nesting can be directly referenced by the Delta transaction log.

B.

Tungsten encoding used by Databricks is optimized for storing string data: newly-added native support for querying JSON strings means that string types are always most efficient.

C.

Schema inference and evolution on Databricks ensure that inferred types will always accurately match the data types used by downstream systems.

D.

By default Delta Lake collects statistics on the first 32 columns in a table; these statistics are leveraged for data skipping when executing selective queries.

Question 29

The following code has been migrated to a Databricks notebook from a legacy workload:

Question # 29

The code executes successfully and provides the logically correct results, however, it takes over 20 minutes to extract and load around 1 GB of data.

Which statement is a possible explanation for this behavior?

Options:

A.

%sh triggers a cluster restart to collect and install Git. Most of the latency is related to cluster startup time.

B.

Instead of cloning, the code should use %sh pip install so that the Python code can get executed in parallel across all nodes in a cluster.

C.

%sh does not distribute file moving operations; the final line of code should be updated to use %fs instead.

D.

Python will always execute slower than Scala on Databricks. The run.py script should be refactored to Scala.

E.

%sh executes shell code on the driver node. The code does not take advantage of the worker nodes or Databricks optimized Spark.

Question 30

Which statement describes Delta Lake optimized writes?

Options:

A.

A shuffle occurs prior to writing to try to group data together resulting in fewer files instead of each executor writing multiple files based on directory partitions.

B.

Optimized writes logical partitions instead of directory partitions partition boundaries are only represented in metadata fewer small files are written.

C.

An asynchronous job runs after the write completes to detect if files could be further compacted; yes, an OPTIMIZE job is executed toward a default of 1 GB.

D.

Before a job cluster terminates, OPTIMIZE is executed on all tables modified during the most recent job.

Question 31

A data engineer is testing a collection of mathematical functions, one of which calculates the area under a curve as described by another function.

Which kind of the test does the above line exemplify?

Options:

A.

Integration

B.

Unit

C.

Manual

D.

functional

Question 32

The DevOps team has configured a production workload as a collection of notebooks scheduled to run daily using the Jobs UI. A new data engineering hire is onboarding to the team and has requested access to one of these notebooks to review the production logic.

What are the maximum notebook permissions that can be granted to the user without allowing accidental changes to production code or data?

Options:

A.

Can Manage

B.

Can Edit

C.

No permissions

D.

Can Read

E.

Can Run

Question 33

When evaluating the Ganglia Metrics for a given cluster with 3 executor nodes, which indicator would signal proper utilization of the VM's resources?

Options:

A.

The five Minute Load Average remains consistent/flat

B.

Bytes Received never exceeds 80 million bytes per second

C.

Network I/O never spikes

D.

Total Disk Space remains constant

E.

CPU Utilization is around 75%

Question 34

Incorporating unit tests into a PySpark application requires upfront attention to the design of your jobs, or a potentially significant refactoring of existing code.

Which statement describes a main benefit that offset this additional effort?

Options:

A.

Improves the quality of your data

B.

Validates a complete use case of your application

C.

Troubleshooting is easier since all steps are isolated and tested individually

D.

Yields faster deployment and execution times

E.

Ensures that all steps interact correctly to achieve the desired end result

Question 35

Which statement characterizes the general programming model used by Spark Structured Streaming?

Options:

A.

Structured Streaming leverages the parallel processing of GPUs to achieve highly parallel data throughput.

B.

Structured Streaming is implemented as a messaging bus and is derived from Apache Kafka.

C.

Structured Streaming uses specialized hardware and I/O streams to achieve sub-second latency for data transfer.

D.

Structured Streaming models new data arriving in a data stream as new rows appended to an unbounded table.

E.

Structured Streaming relies on a distributed network of nodes that hold incremental state values for cached stages.

Question 36

A distributed team of data analysts share computing resources on an interactive cluster with autoscaling configured. In order to better manage costs and query throughput, the workspace administrator is hoping to evaluate whether cluster upscaling is caused by many concurrent users or resource-intensive queries.

In which location can one review the timeline for cluster resizing events?

Options:

A.

Workspace audit logs

B.

Driver's log file

C.

Ganglia

D.

Cluster Event Log

E.

Executor's log file

Page: 1 / 12
Total 120 questions