New Year Special Limited Time Flat 70% Discount offer - Ends in 0d 00h 00m 00s - Coupon code: 70spcl

Amazon Web Services MLS-C01 AWS Certified Machine Learning - Specialty Exam Practice Test

Page: 1 / 31
Total 307 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A company wants to classify user behavior as either fraudulent or normal. Based on internal research, a Machine Learning Specialist would like to build a binary classifier based on two features: age of account and transaction month. The class distribution for these features is illustrated in the figure provided.

Question # 1

Based on this information which model would have the HIGHEST accuracy?

Options:

A.

Long short-term memory (LSTM) model with scaled exponential linear unit (SELL))

B.

Logistic regression

C.

Support vector machine (SVM) with non-linear kernel

D.

Single perceptron with tanh activation function

Question 2

A machine learning (ML) specialist wants to create a data preparation job that uses a PySpark script with complex window aggregation operations to create data for training and testing. The ML specialist needs to evaluate the impact of the number of features and the sample count on model performance.

Which approach should the ML specialist use to determine the ideal data transformations for the model?

Options:

A.

Add an Amazon SageMaker Debugger hook to the script to capture key metrics. Run the script as an AWS Glue job.

B.

Add an Amazon SageMaker Experiments tracker to the script to capture key metrics. Run the script as an AWS Glue job.

C.

Add an Amazon SageMaker Debugger hook to the script to capture key parameters. Run the script as a SageMaker processing job.

D.

Add an Amazon SageMaker Experiments tracker to the script to capture key parameters. Run the script as a SageMaker processing job.

Question 3

A company will use Amazon SageMaker to train and host a machine learning (ML) model for a marketing campaign. The majority of data is sensitive customer data. The data must be encrypted at rest. The company wants AWS to maintain the root of trust for the master keys and wants encryption key usage to be logged.

Which implementation will meet these requirements?

Options:

A.

Use encryption keys that are stored in AWS Cloud HSM to encrypt the ML data volumes, and to encrypt the model artifacts and data in Amazon S3.

B.

Use SageMaker built-in transient keys to encrypt the ML data volumes. Enable default encryption for new Amazon Elastic Block Store (Amazon EBS) volumes.

C.

Use customer managed keys in AWS Key Management Service (AWS KMS) to encrypt the ML data volumes, and to encrypt the model artifacts and data in Amazon S3.

D.

Use AWS Security Token Service (AWS STS) to create temporary tokens to encrypt the ML storage volumes, and to encrypt the model artifacts and data in Amazon S3.

Question 4

A Machine Learning Specialist works for a credit card processing company and needs to predict which transactions may be fraudulent in near-real time. Specifically, the Specialist must train a model that returns the probability that a given transaction may be fraudulent

How should the Specialist frame this business problem'?

Options:

A.

Streaming classification

B.

Binary classification

C.

Multi-category classification

D.

Regression classification

Question 5

A data scientist obtains a tabular dataset that contains 150 correlated features with different ranges to build a regression model. The data scientist needs to achieve more efficient model training by implementing a solution that minimizes impact on the model's performance. The data scientist decides to perform a principal component analysis (PCA) preprocessing step to reduce the number of features to a smaller set of independent features before the data scientist uses the new features in the regression model.

Which preprocessing step will meet these requirements?

Options:

A.

Use the Amazon SageMaker built-in algorithm for PCA on the dataset to transform the data

B.

Load the data into Amazon SageMaker Data Wrangler. Scale the data with a Min Max Scaler transformation step Use the SageMaker built-in algorithm for PCA on the scaled dataset to transform the data.

C.

Reduce the dimensionality of the dataset by removing the features that have the highest correlation Load the data into Amazon SageMaker Data Wrangler Perform a Standard Scaler transformation step to scale the data Use the SageMaker built-in algorithm for PCA on the scaled dataset to transform the data

D.

Reduce the dimensionality of the dataset by removing the features that have the lowest correlation. Load the data into Amazon SageMaker Data Wrangler. Perform a Min Max Scaler transformation step to scale the data. Use the SageMaker built-in algorithm for PCA on the scaled dataset to transform the data.

Question 6

A Machine Learning Specialist has built a model using Amazon SageMaker built-in algorithms and is not getting expected accurate results The Specialist wants to use hyperparameter optimization to increase the model's accuracy

Which method is the MOST repeatable and requires the LEAST amount of effort to achieve this?

Options:

A.

Launch multiple training jobs in parallel with different hyperparameters

B.

Create an AWS Step Functions workflow that monitors the accuracy in Amazon CloudWatch Logs and relaunches the training job with a defined list of hyperparameters

C.

Create a hyperparameter tuning job and set the accuracy as an objective metric.

D.

Create a random walk in the parameter space to iterate through a range of values that should be used for each individual hyperparameter

Question 7

An insurance company developed a new experimental machine learning (ML) model to replace an existing model that is in production. The company must validate the quality of predictions from the new experimental model in a production environment before the company uses the new experimental model to serve general user requests.

Which one model can serve user requests at a time. The company must measure the performance of the new experimental model without affecting the current live traffic

Which solution will meet these requirements?

Options:

A.

A/B testing

B.

Canary release

C.

Shadow deployment

D.

Blue/green deployment

Question 8

A Machine Learning Specialist is building a model that will perform time series forecasting using Amazon SageMaker The Specialist has finished training the model and is now planning to perform load testing on the endpoint so they can configure Auto Scaling for the model variant

Which approach will allow the Specialist to review the latency, memory utilization, and CPU utilization during the load test"?

Options:

A.

Review SageMaker logs that have been written to Amazon S3 by leveraging Amazon Athena and Amazon OuickSight to visualize logs as they are being produced

B.

Generate an Amazon CloudWatch dashboard to create a single view for the latency, memory utilization, and CPU utilization metrics that are outputted by Amazon SageMaker

C.

Build custom Amazon CloudWatch Logs and then leverage Amazon ES and Kibana to query and visualize the data as it is generated by Amazon SageMaker

D.

Send Amazon CloudWatch Logs that were generated by Amazon SageMaker lo Amazon ES and use Kibana to query and visualize the log data.

Question 9

A Machine Learning Specialist prepared the following graph displaying the results of k-means for k = [1:10]

Question # 9

Considering the graph, what is a reasonable selection for the optimal choice of k?

Options:

A.

1

B.

4

C.

7

D.

10

Question 10

A large company has developed a B1 application that generates reports and dashboards using data collected from various operational metrics The company wants to provide executives with an enhanced experience so they can use natural language to get data from the reports The company wants the executives to be able ask questions using written and spoken interlaces

Which combination of services can be used to build this conversational interface? (Select THREE)

Options:

A.

Alexa for Business

B.

Amazon Connect

C.

Amazon Lex

D.

Amazon Poly

E.

Amazon Comprehend

F.

Amazon Transcribe

Question 11

A Machine Learning Specialist is preparing data for training on Amazon SageMaker The Specialist is transformed into a numpy .array, which appears to be negatively affecting the speed of the training

What should the Specialist do to optimize the data for training on SageMaker'?

Options:

A.

Use the SageMaker batch transform feature to transform the training data into a DataFrame

B.

Use AWS Glue to compress the data into the Apache Parquet format

C.

Transform the dataset into the Recordio protobuf format

D.

Use the SageMaker hyperparameter optimization feature to automatically optimize the data

Question 12

A Machine Learning Specialist is given a structured dataset on the shopping habits of a company’s customer

base. The dataset contains thousands of columns of data and hundreds of numerical columns for each

customer. The Specialist wants to identify whether there are natural groupings for these columns across all

customers and visualize the results as quickly as possible.

What approach should the Specialist take to accomplish these tasks?

Options:

A.

Embed the numerical features using the t-distributed stochastic neighbor embedding (t-SNE) algorithm and

create a scatter plot.

B.

Run k-means using the Euclidean distance measure for different values of k and create an elbow plot.

C.

Embed the numerical features using the t-distributed stochastic neighbor embedding (t-SNE) algorithm and

create a line graph.

D.

Run k-means using the Euclidean distance measure for different values of k and create box plots for each numerical column within each cluster.

Question 13

A company is using Amazon Polly to translate plaintext documents to speech for automated company announcements However company acronyms are being mispronounced in the current documents How should a Machine Learning Specialist address this issue for future documents?

Options:

A.

Convert current documents to SSML with pronunciation tags

B.

Create an appropriate pronunciation lexicon.

C.

Output speech marks to guide in pronunciation

D.

Use Amazon Lex to preprocess the text files for pronunciation

Question 14

A Data Science team within a large company uses Amazon SageMaker notebooks to access data stored in Amazon S3 buckets. The IT Security team is concerned that internet-enabled notebook instances create a security vulnerability where malicious code running on the instances could compromise data privacy. The company mandates that all instances stay within a secured VPC with no internet access, and data communication traffic must stay within the AWS network.

How should the Data Science team configure the notebook instance placement to meet these requirements?

Options:

A.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Place the Amazon SageMaker endpoint and S3 buckets within the same VPC.

B.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Use 1AM policies to grant access to Amazon S3 and Amazon SageMaker.

C.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has S3 VPC endpoints and Amazon SageMaker VPC endpoints attached to it.

D.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has a NAT gateway and an associated security group allowing only outbound connections to Amazon S3 and Amazon SageMaker

Question 15

A health care company is planning to use neural networks to classify their X-ray images into normal and abnormal classes. The labeled data is divided into a training set of 1,000 images and a test set of 200 images. The initial training of a neural network model with 50 hidden layers yielded 99% accuracy on the training set, but only 55% accuracy on the test set.

What changes should the Specialist consider to solve this issue? (Choose three.)

Options:

A.

Choose a higher number of layers

B.

Choose a lower number of layers

C.

Choose a smaller learning rate

D.

Enable dropout

E.

Include all the images from the test set in the training set

F.

Enable early stopping

Question 16

A data scientist at a financial services company used Amazon SageMaker to train and deploy a model that predicts loan defaults. The model analyzes new loan applications and predicts the risk of loan default. To train the model, the data scientist manually extracted loan data from a database. The data scientist performed the model training and deployment steps in a Jupyter notebook that is hosted on SageMaker Studio notebooks. The model's prediction accuracy is decreasing over time. Which combination of slept in the MOST operationally efficient way for the data scientist to maintain the model's accuracy? (Select TWO.)

Options:

A.

Use SageMaker Pipelines to create an automated workflow that extracts fresh data, trains the model, and deploys a new version of the model.

B.

Configure SageMaker Model Monitor with an accuracy threshold to check for model drift. Initiate an Amazon CloudWatch alarm when the threshold is exceeded. Connect the workflow in SageMaker Pipelines with the CloudWatch alarm to automatically initiate retraining.

C.

Store the model predictions in Amazon S3 Create a daily SageMaker Processing job that reads the predictions from Amazon S3, checks for changes in model prediction accuracy, and sends an email notification if a significant change is detected.

D.

Rerun the steps in the Jupyter notebook that is hosted on SageMaker Studio notebooks to retrain the model and redeploy a new version of the model.

E.

Export the training and deployment code from the SageMaker Studio notebooks into a Python script. Package the script into an Amazon Elastic Container Service (Amazon ECS) task that an AWS Lambda function can initiate.

Question 17

A global bank requires a solution to predict whether customers will leave the bank and choose another bank. The bank is using a dataset to train a model to predict customer loss. The training dataset has 1,000 rows. The training dataset includes 100 instances of customers who left the bank.

A machine learning (ML) specialist is using Amazon SageMaker Data Wrangler to train a churn prediction model by using a SageMaker training job. After training, the ML specialist notices that the model returns only false results. The ML specialist must correct the model so that it returns more accurate predictions.

Which solution will meet these requirements?

Options:

A.

Apply anomaly detection to remove outliers from the training dataset before training.

B.

Apply Synthetic Minority Oversampling Technique (SMOTE) to the training dataset before training.

C.

Apply normalization to the features of the training dataset before training.

D.

Apply undersampling to the training dataset before training.

Question 18

A machine learning (ML) specialist is using Amazon SageMaker hyperparameter optimization (HPO) to improve a model’s accuracy. The learning rate parameter is specified in the following HPO configuration:

During the results analysis, the ML specialist determines that most of the training jobs had a learning rate between 0.01 and 0.1. The best result had a learning rate of less than 0.01. Training jobs need to run regularly over a changing dataset. The ML specialist needs to find a tuning mechanism that uses different learning rates more evenly from the provided range between MinValue and MaxValue.

Which solution provides the MOST accurate result?

Options:

A.

Modify the HPO configuration as follows:

Select the most accurate hyperparameter configuration form this HPO job.

B.

Run three different HPO jobs that use different learning rates form the following intervals for MinValue and MaxValue while using the same number of training jobs for each HPO job:

[0.01, 0.1]

[0.001, 0.01]

[0.0001, 0.001]

Select the most accurate hyperparameter configuration form these three HPO jobs.

C.

Modify the HPO configuration as follows:

Select the most accurate hyperparameter configuration form this training job.

D.

Run three different HPO jobs that use different learning rates form the following intervals for MinValue and MaxValue. Divide the number of training jobs for each HPO job by three:

[0.01, 0.1]

[0.001, 0.01]

[0.0001, 0.001]

Select the most accurate hyperparameter configuration form these three HPO jobs.

Question 19

An interactive online dictionary wants to add a widget that displays words used in similar contexts. A Machine Learning Specialist is asked to provide word features for the downstream nearest neighbor model powering the widget.

What should the Specialist do to meet these requirements?

Options:

A.

Create one-hot word encoding vectors.

B.

Produce a set of synonyms for every word using Amazon Mechanical Turk.

C.

Create word embedding factors that store edit distance with every other word.

D.

Download word embedding’s pre-trained on a large corpus.

Question 20

A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only

How should the Machine Learning Specialist transform the dataset to minimize query runtime?

Options:

A.

Convert the records to Apache Parquet format

B.

Convert the records to JSON format

C.

Convert the records to GZIP CSV format

D.

Convert the records to XML format

Question 21

A Machine Learning Specialist discover the following statistics while experimenting on a model.

What can the Specialist from the experiments?

Options:

A.

The model In Experiment 1 had a high variance error lhat was reduced in Experiment 3 by regularization Experiment 2 shows that there is minimal bias error in Experiment 1

B.

The model in Experiment 1 had a high bias error that was reduced in Experiment 3 by regularization Experiment 2 shows that there is minimal variance error in Experiment 1

C.

The model in Experiment 1 had a high bias error and a high variance error that were reduced in Experiment 3 by regularization Experiment 2 shows thai high bias cannot be reduced by increasing layers and neurons in the model

D.

The model in Experiment 1 had a high random noise error that was reduced in Experiment 3 by regularization Experiment 2 shows that random noise cannot be reduced by increasing layers and neurons in the model

Question 22

A financial company is trying to detect credit card fraud. The company observed that, on average, 2% of credit card transactions were fraudulent. A data scientist trained a classifier on a year's worth of credit card transactions data. The model needs to identify the fraudulent transactions (positives) from the regular ones (negatives). The company's goal is to accurately capture as many positives as possible.

Which metrics should the data scientist use to optimize the model? (Choose two.)

Options:

A.

Specificity

B.

False positive rate

C.

Accuracy

D.

Area under the precision-recall curve

E.

True positive rate

Question 23

A data engineer is preparing a dataset that a retail company will use to predict the number of visitors to stores. The data engineer created an Amazon S3 bucket. The engineer subscribed the S3 bucket to an AWS Data Exchange data product for general economic indicators. The data engineer wants to join the economic indicator data to an existing table in Amazon Athena to merge with the business data. All these transformations must finish running in 30-60 minutes.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Configure the AWS Data Exchange product as a producer for an Amazon Kinesis data stream. Use an Amazon Kinesis Data Firehose delivery stream to transfer the data to Amazon S3 Run an AWS Glue job that will merge the existing business data with the Athena table. Write the result set back to Amazon S3.

B.

Use an S3 event on the AWS Data Exchange S3 bucket to invoke an AWS Lambda function. Program the Lambda function to use Amazon SageMaker Data Wrangler to merge the existing business data with the Athena table. Write the result set back to Amazon S3.

C.

Use an S3 event on the AWS Data Exchange S3 bucket to invoke an AWS Lambda Function Program the Lambda function to run an AWS Glue job that will merge the existing business data with the Athena table Write the results back to Amazon S3.

D.

Provision an Amazon Redshift cluster. Subscribe to the AWS Data Exchange product and use the product to create an Amazon Redshift Table Merge the data in Amazon Redshift. Write the results back to Amazon S3.

Question 24

A data scientist wants to improve the fit of a machine learning (ML) model that predicts house prices. The data scientist makes a first attempt to fit the model, but the fitted model has poor accuracy on both the training dataset and the test dataset.

Which steps must the data scientist take to improve model accuracy? (Select THREE.)

Options:

A.

Increase the amount of regularization that the model uses.

B.

Decrease the amount of regularization that the model uses.

C.

Increase the number of training examples that that model uses.

D.

Increase the number of test examples that the model uses.

E.

Increase the number of model features that the model uses.

F.

Decrease the number of model features that the model uses.

Question 25

A financial services company wants to automate its loan approval process by building a machine learning (ML) model. Each loan data point contains credit history from a third-party data source and demographic information about the customer. Each loan approval prediction must come with a report that contains an explanation for why the customer was approved for a loan or was denied for a loan. The company will use Amazon SageMaker to build the model.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use SageMaker Model Debugger to automatically debug the predictions, generate the explanation, and attach the explanation report.

B.

Use AWS Lambda to provide feature importance and partial dependence plots. Use the plots to generate and attach the explanation report.

C.

Use SageMaker Clarify to generate the explanation report. Attach the report to the predicted results.

D.

Use custom Amazon Cloud Watch metrics to generate the explanation report. Attach the report to the predicted results.

Question 26

A chemical company has developed several machine learning (ML) solutions to identify chemical process abnormalities. The time series values of independent variables and the labels are available for the past 2 years and are sufficient to accurately model the problem.

The regular operation label is marked as 0. The abnormal operation label is marked as 1 . Process abnormalities have a significant negative effect on the companys profits. The company must avoid these abnormalities.

Which metrics will indicate an ML solution that will provide the GREATEST probability of detecting an abnormality?

Options:

A.

Precision = 0.91

Recall = 0.6

B.

Precision = 0.61

Recall = 0.98

C.

Precision = 0.7

Recall = 0.9

D.

Precision = 0.98

Recall = 0.8

Question 27

A company is observing low accuracy while training on the default built-in image classification algorithm in Amazon SageMaker. The Data Science team wants to use an Inception neural network architecture instead of a ResNet architecture.

Which of the following will accomplish this? (Select TWO.)

Options:

A.

Customize the built-in image classification algorithm to use Inception and use this for model training.

B.

Create a support case with the SageMaker team to change the default image classification algorithm to Inception.

C.

Bundle a Docker container with TensorFlow Estimator loaded with an Inception network and use this for model training.

D.

Use custom code in Amazon SageMaker with TensorFlow Estimator to load the model with an Inception network and use this for model training.

E.

Download and apt-get install the inception network code into an Amazon EC2 instance and use this instance as a Jupyter notebook in Amazon SageMaker.

Question 28

A retail company is selling products through a global online marketplace. The company wants to use machine learning (ML) to analyze customer feedback and identify specific areas for improvement. A developer has built a tool that collects customer reviews from the online marketplace and stores them in an Amazon S3 bucket. This process yields a dataset of 40 reviews. A data scientist building the ML models must identify additional sources of data to increase the size of the dataset.

Which data sources should the data scientist use to augment the dataset of reviews? (Choose three.)

Options:

A.

Emails exchanged by customers and the company’s customer service agents

B.

Social media posts containing the name of the company or its products

C.

A publicly available collection of news articles

D.

A publicly available collection of customer reviews

E.

Product sales revenue figures for the company

F.

Instruction manuals for the company’s products

Question 29

Each morning, a data scientist at a rental car company creates insights about the previous day’s rental car reservation demands. The company needs to automate this process by streaming the data to Amazon S3 in near real time. The solution must detect high-demand rental cars at each of the company’s locations. The solution also must create a visualization dashboard that automatically refreshes with the most recent data.

Which solution will meet these requirements with the LEAST development time?

Options:

A.

Use Amazon Kinesis Data Firehose to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using Amazon QuickSight ML Insights. Visualize the data in QuickSight.

B.

Use Amazon Kinesis Data Streams to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using the Random Cut Forest (RCF) trained model in Amazon SageMaker. Visualize the data in Amazon QuickSight.

C.

Use Amazon Kinesis Data Firehose to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using the Random Cut Forest (RCF) trained model in Amazon SageMaker. Visualize the data in Amazon QuickSight.

D.

Use Amazon Kinesis Data Streams to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using Amazon QuickSight ML Insights. Visualize the data in QuickSight.

Question 30

The displayed graph is from a foresting model for testing a time series.

Considering the graph only, which conclusion should a Machine Learning Specialist make about the behavior of the model?

Options:

A.

The model predicts both the trend and the seasonality well.

B.

The model predicts the trend well, but not the seasonality.

C.

The model predicts the seasonality well, but not the trend.

D.

The model does not predict the trend or the seasonality well.

Question 31

A Data Scientist is developing a binary classifier to predict whether a patient has a particular disease on a series of test results. The Data Scientist has data on 400 patients randomly selected from the population. The disease is seen in 3% of the population.

Which cross-validation strategy should the Data Scientist adopt?

Options:

A.

A k-fold cross-validation strategy with k=5

B.

A stratified k-fold cross-validation strategy with k=5

C.

A k-fold cross-validation strategy with k=5 and 3 repeats

D.

An 80/20 stratified split between training and validation

Question 32

The chief editor for a product catalog wants the research and development team to build a machine learning system that can be used to detect whether or not individuals in a collection of images are wearing the company's retail brand. The team has a set of training data.

Which machine learning algorithm should the researchers use that BEST meets their requirements?

Options:

A.

Latent Dirichlet Allocation (LDA)

B.

Recurrent neural network (RNN)

C.

K-means

D.

Convolutional neural network (CNN)

Question 33

An ecommerce company wants to train a large image classification model with 10.000 classes. The company runs multiple model training iterations and needs to minimize operational overhead and cost. The company also needs to avoid loss of work and model retraining.

Which solution will meet these requirements?

Options:

A.

Create the training jobs as AWS Batch jobs that use Amazon EC2 Spot Instances in a managed compute environment.

B.

Use Amazon EC2 Spot Instances to run the training jobs. Use a Spot Instance interruption notice to save a snapshot of the model to Amazon S3 before an instance is terminated.

C.

Use AWS Lambda to run the training jobs. Save model weights to Amazon S3.

D.

Use managed spot training in Amazon SageMaker. Launch the training jobs with checkpointing enabled.

Question 34

A Machine Learning Specialist is building a prediction model for a large number of features using linear models, such as linear regression and logistic regression During exploratory data analysis the Specialist observes that many features are highly correlated with each other This may make the model unstable

What should be done to reduce the impact of having such a large number of features?

Options:

A.

Perform one-hot encoding on highly correlated features

B.

Use matrix multiplication on highly correlated features.

C.

Create a new feature space using principal component analysis (PCA)

D.

Apply the Pearson correlation coefficient

Question 35

A Machine Learning Specialist is working for a credit card processing company and receives an unbalanced dataset containing credit card transactions. It contains 99,000 valid transactions and 1,000 fraudulent transactions The Specialist is asked to score a model that was run against the dataset The Specialist has been advised that identifying valid transactions is equally as important as identifying fraudulent transactions

What metric is BEST suited to score the model?

Options:

A.

Precision

B.

Recall

C.

Area Under the ROC Curve (AUC)

D.

Root Mean Square Error (RMSE)

Question 36

A Machine Learning Specialist is developing a custom video recommendation model for an application The dataset used to train this model is very large with millions of data points and is hosted in an Amazon S3 bucket The Specialist wants to avoid loading all of this data onto an Amazon SageMaker notebook instance because it would take hours to move and will exceed the attached 5 GB Amazon EBS volume on the notebook instance.

Which approach allows the Specialist to use all the data to train the model?

Options:

A.

Load a smaller subset of the data into the SageMaker notebook and train locally. Confirm that the training

code is executing and the model parameters seem reasonable. Initiate a SageMaker training job using the

full dataset from the S3 bucket using Pipe input mode.

B.

Launch an Amazon EC2 instance with an AWS Deep Learning AMI and attach the S3 bucket to the

instance. Train on a small amount of the data to verify the training code and hyperparameters. Go back to

Amazon SageMaker and train using the full dataset

C.

Use AWS Glue to train a model using a small subset of the data to confirm that the data will be compatible

with Amazon SageMaker. Initiate a SageMaker training job using the full dataset from the S3 bucket using

Pipe input mode.

D.

Load a smaller subset of the data into the SageMaker notebook and train locally. Confirm that the training

code is executing and the model parameters seem reasonable. Launch an Amazon EC2 instance with an

AWS Deep Learning AMI and attach the S3 bucket to train the full dataset.

Question 37

A Machine Learning Specialist is working with a large company to leverage machine learning within its products. The company wants to group its customers into categories based on which customers will and will not churn within the next 6 months. The company has labeled the data available to the Specialist.

Which machine learning model type should the Specialist use to accomplish this task?

Options:

A.

Linear regression

B.

Classification

C.

Clustering

D.

Reinforcement learning

Question 38

A Machine Learning Specialist is planning to create a long-running Amazon EMR cluster. The EMR cluster will

have 1 master node, 10 core nodes, and 20 task nodes. To save on costs, the Specialist will use Spot

Instances in the EMR cluster.

Which nodes should the Specialist launch on Spot Instances?

Options:

A.

Master node

B.

Any of the core nodes

C.

Any of the task nodes

D.

Both core and task nodes

Question 39

An insurance company is developing a new device for vehicles that uses a camera to observe drivers' behavior and alert them when they appear distracted The company created approximately 10,000 training images in a controlled environment that a Machine Learning Specialist will use to train and evaluate machine learning models

During the model evaluation the Specialist notices that the training error rate diminishes faster as the number of epochs increases and the model is not accurately inferring on the unseen test images

Which of the following should be used to resolve this issue? (Select TWO)

Options:

A.

Add vanishing gradient to the model

B.

Perform data augmentation on the training data

C.

Make the neural network architecture complex.

D.

Use gradient checking in the model

E.

Add L2 regularization to the model

Question 40

A company sells thousands of products on a public website and wants to automatically identify products with potential durability problems. The company has 1.000 reviews with date, star rating, review text, review summary, and customer email fields, but many reviews are incomplete and have empty fields. Each review has already been labeled with the correct durability result.

A machine learning specialist must train a model to identify reviews expressing concerns over product durability. The first model needs to be trained and ready to review in 2 days.

What is the MOST direct approach to solve this problem within 2 days?

Options:

A.

Train a custom classifier by using Amazon Comprehend.

B.

Build a recurrent neural network (RNN) in Amazon SageMaker by using Gluon and Apache MXNet.

C.

Train a built-in BlazingText model using Word2Vec mode in Amazon SageMaker.

D.

Use a built-in seq2seq model in Amazon SageMaker.

Question 41

A Machine Learning Specialist previously trained a logistic regression model using scikit-learn on a local

machine, and the Specialist now wants to deploy it to production for inference only.

What steps should be taken to ensure Amazon SageMaker can host a model that was trained locally?

Options:

A.

Build the Docker image with the inference code. Tag the Docker image with the registry hostname and

upload it to Amazon ECR.

B.

Serialize the trained model so the format is compressed for deployment. Tag the Docker image with the

registry hostname and upload it to Amazon S3.

C.

Serialize the trained model so the format is compressed for deployment. Build the image and upload it to

Docker Hub.

D.

Build the Docker image with the inference code. Configure Docker Hub and upload the image to Amazon ECR.

Question 42

A business to business (B2B) ecommerce company wants to develop a fair and equitable risk mitigation strategy to reject potentially fraudulent transactions. The company wants to reject fraudulent transactions despite the possibility of losing some profitable transactions or customers.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use Amazon SageMaker to approve transactions only for products the company has sold in the past.

B.

Use Amazon SageMaker to train a custom fraud detection model based on customer data.

C.

Use the Amazon Fraud Detector prediction API to approve or deny any activities that Fraud Detector identifies as fraudulent.

D.

Use the Amazon Fraud Detector prediction API to identify potentially fraudulent activities so the company can review the activities and reject fraudulent transactions.

Question 43

A data engineer at a bank is evaluating a new tabular dataset that includes customer data. The data engineer will use the customer data to create a new model to predict customer behavior. After creating a correlation matrix for the variables, the data engineer notices that many of the 100 features are highly correlated with each other.

Which steps should the data engineer take to address this issue? (Choose two.)

Options:

A.

Use a linear-based algorithm to train the model.

B.

Apply principal component analysis (PCA).

C.

Remove a portion of highly correlated features from the dataset.

D.

Apply min-max feature scaling to the dataset.

E.

Apply one-hot encoding category-based variables.

Question 44

A machine learning specialist is developing a regression model to predict rental rates from rental listings. A variable named Wall_Color represents the most prominent exterior wall color of the property. The following is the sample data, excluding all other variables:

The specialist chose a model that needs numerical input data.

Which feature engineering approaches should the specialist use to allow the regression model to learn from the Wall_Color data? (Choose two.)

Options:

A.

Apply integer transformation and set Red = 1, White = 5, and Green = 10.

B.

Add new columns that store one-hot representation of colors.

C.

Replace the color name string by its length.

D.

Create three columns to encode the color in RGB format.

E.

Replace each color name by its training set frequency.

Question 45

A Machine Learning Specialist is working with multiple data sources containing billions of records that need to be joined. What feature engineering and model development approach should the Specialist take with a dataset this large?

Options:

A.

Use an Amazon SageMaker notebook for both feature engineering and model development

B.

Use an Amazon SageMaker notebook for feature engineering and Amazon ML for model development

C.

Use Amazon EMR for feature engineering and Amazon SageMaker SDK for model development

D.

Use Amazon ML for both feature engineering and model development.

Question 46

A large mobile network operating company is building a machine learning model to predict customers who are likely to unsubscribe from the service. The company plans to offer an incentive for these customers as the cost of churn is far greater than the cost of the incentive.

The model produces the following confusion matrix after evaluating on a test dataset of 100 customers:

Based on the model evaluation results, why is this a viable model for production?

Question # 46

Options:

A.

The model is 86% accurate and the cost incurred by the company as a result of false negatives is less than the false positives.

B.

The precision of the model is 86%, which is less than the accuracy of the model.

C.

The model is 86% accurate and the cost incurred by the company as a result of false positives is less than the false negatives.

D.

The precision of the model is 86%, which is greater than the accuracy of the model.

Question 47

A company that promotes healthy sleep patterns by providing cloud-connected devices currently hosts a sleep tracking application on AWS. The application collects device usage information from device users. The company's Data Science team is building a machine learning model to predict if and when a user will stop utilizing the company's devices. Predictions from this model are used by a downstream application that determines the best approach for contacting users.

The Data Science team is building multiple versions of the machine learning model to evaluate each version against the company’s business goals. To measure long-term effectiveness, the team wants to run multiple versions of the model in parallel for long periods of time, with the ability to control the portion of inferences served by the models.

Which solution satisfies these requirements with MINIMAL effort?

Options:

A.

Build and host multiple models in Amazon SageMaker. Create multiple Amazon SageMaker endpoints, one for each model. Programmatically control invoking different models for inference at the application layer.

B.

Build and host multiple models in Amazon SageMaker. Create an Amazon SageMaker endpoint configuration with multiple production variants. Programmatically control the portion of the inferences served by the multiple models by updating the endpoint configuration.

C.

Build and host multiple models in Amazon SageMaker Neo to take into account different types of medical devices. Programmatically control which model is invoked for inference based on the medical device type.

D.

Build and host multiple models in Amazon SageMaker. Create a single endpoint that accesses multiple models. Use Amazon SageMaker batch transform to control invoking the different models through the single endpoint.

Question 48

A bank wants to launch a low-rate credit promotion. The bank is located in a town that recently experienced economic hardship. Only some of the bank's customers were affected by the crisis, so the bank's credit team must identify which customers to target with the promotion. However, the credit team wants to make sure that loyal customers' full credit history is considered when the decision is made.

The bank's data science team developed a model that classifies account transactions and understands credit eligibility. The data science team used the XGBoost algorithm to train the model. The team used 7 years of bank transaction historical data for training and hyperparameter tuning over the course of several days.

The accuracy of the model is sufficient, but the credit team is struggling to explain accurately why the model denies credit to some customers. The credit team has almost no skill in data science.

What should the data science team do to address this issue in the MOST operationally efficient manner?

Options:

A.

Use Amazon SageMaker Studio to rebuild the model. Create a notebook that uses the XGBoost training container to perform model training. Deploy the model at an endpoint. Enable Amazon SageMaker Model Monitor to store inferences. Use the inferences to create Shapley values that help explain model behavior. Create a chart that shows features and SHapley Additive exPlanations (SHAP) values to explain to the credit team how the features affect t

B.

Use Amazon SageMaker Studio to rebuild the model. Create a notebook that uses the XGBoost training container to perform model training. Activate Amazon SageMaker Debugger, and configure it to calculate and collect Shapley values. Create a chart that shows features and SHapley Additive exPlanations (SHAP) values to explain to the credit team how the features affect the model outcomes.

C.

Create an Amazon SageMaker notebook instance. Use the notebook instance and the XGBoost library to locally retrain the model. Use the plot_importance() method in the Python XGBoost interface to create a feature importance chart. Use that chart to explain to the credit team how the features affect the model outcomes.

D.

Use Amazon SageMaker Studio to rebuild the model. Create a notebook that uses the XGBoost training container to perform model training. Deploy the model at an endpoint. Use Amazon SageMaker Processing to post-analyze the model and create a feature importance explainability chart automatically for the credit team.

Question 49

A Machine Learning Specialist has created a deep learning neural network model that performs well on the training data but performs poorly on the test data.

Which of the following methods should the Specialist consider using to correct this? (Select THREE.)

Options:

A.

Decrease regularization.

B.

Increase regularization.

C.

Increase dropout.

D.

Decrease dropout.

E.

Increase feature combinations.

F.

Decrease feature combinations.

Question 50

The Chief Editor for a product catalog wants the Research and Development team to build a machine learning system that can be used to detect whether or not individuals in a collection of images are wearing the company's retail brand The team has a set of training data

Which machine learning algorithm should the researchers use that BEST meets their requirements?

Options:

A.

Latent Dirichlet Allocation (LDA)

B.

Recurrent neural network (RNN)

C.

K-means

D.

Convolutional neural network (CNN)

Question 51

For the given confusion matrix, what is the recall and precision of the model?

Question # 51

Options:

A.

Recall = 0.92 Precision = 0.84

B.

Recall = 0.84 Precision = 0.8

C.

Recall = 0.92 Precision = 0.8

D.

Recall = 0.8 Precision = 0.92

Question 52

A data scientist is training a text classification model by using the Amazon SageMaker built-in BlazingText algorithm. There are 5 classes in the dataset, with 300 samples for category A, 292 samples for category B, 240 samples for category C, 258 samples for category D, and 310 samples for category E.

The data scientist shuffles the data and splits off 10% for testing. After training the model, the data scientist generates confusion matrices for the training and test sets.

Question # 52

What could the data scientist conclude form these results?

Options:

A.

Classes C and D are too similar.

B.

The dataset is too small for holdout cross-validation.

C.

The data distribution is skewed.

D.

The model is overfitting for classes B and E.

Question 53

A technology startup is using complex deep neural networks and GPU compute to recommend the company’s products to its existing customers based upon each customer’s habits and interactions. The solution currently pulls each dataset from an Amazon S3 bucket before loading the data into a TensorFlow model pulled from the company’s Git repository that runs locally. This job then runs for several hours while continually outputting its progress to the same S3 bucket. The job can be paused, restarted, and continued at any time in the event of a failure, and is run from a central queue.

Senior managers are concerned about the complexity of the solution’s resource management and the costs involved in repeating the process regularly. They ask for the workload to be automated so it runs once a week, starting Monday and completing by the close of business Friday.

Which architecture should be used to scale the solution at the lowest cost?

Options:

A.

Implement the solution using AWS Deep Learning Containers and run the container as a job using AWS Batch on a GPU-compatible Spot Instance

B.

Implement the solution using a low-cost GPU-compatible Amazon EC2 instance and use the AWS Instance Scheduler to schedule the task

C.

Implement the solution using AWS Deep Learning Containers, run the workload using AWS Fargate running on Spot Instances, and then schedule the task using the built-in task scheduler

D.

Implement the solution using Amazon ECS running on Spot Instances and schedule the task using the ECS service scheduler

Question 54

A company has raw user and transaction data stored in AmazonS3 a MySQL database, and Amazon RedShift A Data Scientist needs to perform an analysis by joining the three datasets from Amazon S3, MySQL, and Amazon RedShift, and then calculating the average-of a few selected columns from the joined data

Which AWS service should the Data Scientist use?

Options:

A.

Amazon Athena

B.

Amazon Redshift Spectrum

C.

AWS Glue

D.

Amazon QuickSight

Question 55

A machine learning (ML) specialist at a retail company must build a system to forecast the daily sales for one of the company's stores. The company provided the ML specialist with sales data for this store from the past 10 years. The historical dataset includes the total amount of sales on each day for the store. Approximately 10% of the days in the historical dataset are missing sales data.

The ML specialist builds a forecasting model based on the historical dataset. The specialist discovers that the model does not meet the performance standards that the company requires.

Which action will MOST likely improve the performance for the forecasting model?

Options:

A.

Aggregate sales from stores in the same geographic area.

B.

Apply smoothing to correct for seasonal variation.

C.

Change the forecast frequency from daily to weekly.

D.

Replace missing values in the dataset by using linear interpolation.

Question 56

A data scientist stores financial datasets in Amazon S3. The data scientist uses Amazon Athena to query the datasets by using SQL.

The data scientist uses Amazon SageMaker to deploy a machine learning (ML) model. The data scientist wants to obtain inferences from the model at the SageMaker endpoint However, when the data …. ntist attempts to invoke the SageMaker endpoint, the data scientist receives SOL statement failures The data scientist's 1AM user is currently unable to invoke the SageMaker endpoint

Which combination of actions will give the data scientist's 1AM user the ability to invoke the SageMaker endpoint? (Select THREE.)

Options:

A.

Attach the AmazonAthenaFullAccess AWS managed policy to the user identity.

B.

Include a policy statement for the data scientist's 1AM user that allows the 1AM user to perform the sagemaker: lnvokeEndpoint action,

C.

Include an inline policy for the data scientist’s 1AM user that allows SageMaker to read S3 objects

D.

Include a policy statement for the data scientist's 1AM user that allows the 1AM user to perform the sagemakerGetRecord action.

E.

Include the SQL statement "USING EXTERNAL FUNCTION ml_function_name" in the Athena SQL query.

F.

Perform a user remapping in SageMaker to map the 1AM user to another 1AM user that is on the hosted endpoint.

Question 57

A company uses sensors on devices such as motor engines and factory machines to measure parameters, temperature and pressure. The company wants to use the sensor data to predict equipment malfunctions and reduce services outages.

The Machine learning (ML) specialist needs to gather the sensors data to train a model to predict device malfunctions The ML spoctafst must ensure that the data does not contain outliers before training the ..el.

What can the ML specialist meet these requirements with the LEAST operational overhead?

Options:

A.

Load the data into an Amazon SagcMaker Studio notebook. Calculate the first and third quartile Use a SageMaker Data Wrangler data (low to remove only values that are outside of those quartiles.

B.

Use an Amazon SageMaker Data Wrangler bias report to find outliers in the dataset Use a Data Wrangler data flow to remove outliers based on the bias report.

C.

Use an Amazon SageMaker Data Wrangler anomaly detection visualization to find outliers in the dataset. Add a transformation to a Data Wrangler data flow to remove outliers.

D.

Use Amazon Lookout for Equipment to find and remove outliers from the dataset.

Question 58

During mini-batch training of a neural network for a classification problem, a Data Scientist notices that training accuracy oscillates What is the MOST likely cause of this issue?

Options:

A.

The class distribution in the dataset is imbalanced

B.

Dataset shuffling is disabled

C.

The batch size is too big

D.

The learning rate is very high

Question 59

A medical device company is building a machine learning (ML) model to predict the likelihood of device recall based on customer data that the company collects from a plain text survey. One of the survey questions asks which medications the customer is taking. The data for this field contains the names of medications that customers enter manually. Customers misspell some of the medication names. The column that contains the medication name data gives a categorical feature with high cardinality but redundancy.

What is the MOST effective way to encode this categorical feature into a numeric feature?

Options:

A.

Spell check the column. Use Amazon SageMaker one-hot encoding on the column to transform a categorical feature to a numerical feature.

B.

Fix the spelling in the column by using char-RNN. Use Amazon SageMaker Data Wrangler one-hot encoding to transform a categorical feature to a numerical feature.

C.

Use Amazon SageMaker Data Wrangler similarity encoding on the column to create embeddings Of vectors Of real numbers.

D.

Use Amazon SageMaker Data Wrangler ordinal encoding on the column to encode categories into an integer between O and the total number Of categories in the column.

Question 60

A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.

Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)

Options:

A.

AWS CloudTrail

B.

AWS Health

C.

AWS Trusted Advisor

D.

Amazon CloudWatch

E.

AWS Config

Question 61

A Machine Learning Specialist is assigned a TensorFlow project using Amazon SageMaker for training, and needs to continue working for an extended period with no Wi-Fi access.

Which approach should the Specialist use to continue working?

Options:

A.

Install Python 3 and boto3 on their laptop and continue the code development using that environment.

B.

Download the TensorFlow Docker container used in Amazon SageMaker from GitHub to their local environment, and use the Amazon SageMaker Python SDK to test the code.

C.

Download TensorFlow from tensorflow.org to emulate the TensorFlow kernel in the SageMaker environment.

D.

Download the SageMaker notebook to their local environment then install Jupyter Notebooks on their laptop and continue the development in a local notebook.

Question 62

A car company is developing a machine learning solution to detect whether a car is present in an image. The image dataset consists of one million images. Each image in the dataset is 200 pixels in height by 200 pixels in width. Each image is labeled as either having a car or not having a car.

Which architecture is MOST likely to produce a model that detects whether a car is present in an image with the highest accuracy?

Options:

A.

Use a deep convolutional neural network (CNN) classifier with the images as input. Include a linear output layer that outputs the probability that an image contains a car.

B.

Use a deep convolutional neural network (CNN) classifier with the images as input. Include a softmax output layer that outputs the probability that an image contains a car.

C.

Use a deep multilayer perceptron (MLP) classifier with the images as input. Include a linear output layer that outputs the probability that an image contains a car.

D.

Use a deep multilayer perceptron (MLP) classifier with the images as input. Include a softmax output layer that outputs the probability that an image contains a car.

Question 63

A machine learning specialist is developing a proof of concept for government users whose primary concern is security. The specialist is using Amazon SageMaker to train a convolutional neural network (CNN) model for a photo classifier application. The specialist wants to protect the data so that it cannot be accessed and transferred to a remote host by malicious code accidentally installed on the training container.

Which action will provide the MOST secure protection?

Options:

A.

Remove Amazon S3 access permissions from the SageMaker execution role.

B.

Encrypt the weights of the CNN model.

C.

Encrypt the training and validation dataset.

D.

Enable network isolation for training jobs.

Question 64

A Machine Learning Specialist is using Apache Spark for pre-processing training data As part of the Spark pipeline, the Specialist wants to use Amazon SageMaker for training a model and hosting it Which of the following would the Specialist do to integrate the Spark application with SageMaker? (Select THREE)

Options:

A.

Download the AWS SDK for the Spark environment

B.

Install the SageMaker Spark library in the Spark environment.

C.

Use the appropriate estimator from the SageMaker Spark Library to train a model.

D.

Compress the training data into a ZIP file and upload it to a pre-defined Amazon S3 bucket.

E.

Use the sageMakerModel. transform method to get inferences from the model hosted in SageMaker

F.

Convert the DataFrame object to a CSV file, and use the CSV file as input for obtaining inferences from SageMaker.

Question 65

A machine learning (ML) specialist is using the Amazon SageMaker DeepAR forecasting algorithm to train a model on CPU-based Amazon EC2 On-Demand instances. The model currently takes multiple hours to train. The ML specialist wants to decrease the training time of the model.

Which approaches will meet this requirement7 (SELECT TWO )

Options:

A.

Replace On-Demand Instances with Spot Instances

B.

Configure model auto scaling dynamically to adjust the number of instances automatically.

C.

Replace CPU-based EC2 instances with GPU-based EC2 instances.

D.

Use multiple training instances.

E.

Use a pre-trained version of the model. Run incremental training.

Question 66

A data scientist has been running an Amazon SageMaker notebook instance for a few weeks. During this time, a new version of Jupyter Notebook was released along with additional software updates. The security team mandates that all running SageMaker notebook instances use the latest security and software updates provided by SageMaker.

How can the data scientist meet these requirements?

Options:

A.

Call the CreateNotebookInstanceLifecycleConfig API operation

B.

Create a new SageMaker notebook instance and mount the Amazon Elastic Block Store (Amazon EBS) volume from the original instance

C.

Stop and then restart the SageMaker notebook instance

D.

Call the UpdateNotebookInstanceLifecycleConfig API operation

Question 67

A network security vendor needs to ingest telemetry data from thousands of endpoints that run all over the world. The data is transmitted every 30 seconds in the form of records that contain 50 fields. Each record is up to 1 KB in size. The security vendor uses Amazon Kinesis Data Streams to ingest the data. The vendor requires hourly summaries of the records that Kinesis Data Streams ingests. The vendor will use Amazon Athena to query the records and to generate the summaries. The Athena queries will target 7 to 12 of the available data fields.

Which solution will meet these requirements with the LEAST amount of customization to transform and store the ingested data?

Options:

A.

Use AWS Lambda to read and aggregate the data hourly. Transform the data and store it in Amazon S3 by using Amazon Kinesis Data Firehose.

B.

Use Amazon Kinesis Data Firehose to read and aggregate the data hourly. Transform the data and store it in Amazon S3 by using a short-lived Amazon EMR cluster.

C.

Use Amazon Kinesis Data Analytics to read and aggregate the data hourly. Transform the data and store it in Amazon S3 by using Amazon Kinesis Data Firehose.

D.

Use Amazon Kinesis Data Firehose to read and aggregate the data hourly. Transform the data and store it in Amazon S3 by using AWS Lambda.

Question 68

A machine learning (ML) specialist is training a linear regression model. The specialist notices that the model is overfitting. The specialist applies an L1 regularization parameter and runs the model again. This change results in all features having zero weights.

What should the ML specialist do to improve the model results?

Options:

A.

Increase the L1 regularization parameter. Do not change any other training parameters.

B.

Decrease the L1 regularization parameter. Do not change any other training parameters.

C.

Introduce a large L2 regularization parameter. Do not change the current L1 regularization value.

D.

Introduce a small L2 regularization parameter. Do not change the current L1 regularization value.

Question 69

A company wants to predict the classification of documents that are created from an application. New documents are saved to an Amazon S3 bucket every 3 seconds. The company has developed three versions of a machine learning (ML) model within Amazon SageMaker to classify document text. The company wants to deploy these three versions to predict the classification of each document.

Which approach will meet these requirements with the LEAST operational overhead?

Options:

A.

Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to create three SageMaker batch transform jobs, one batch transform job for each model for each document.

B.

Deploy all the models to a single SageMaker endpoint. Treat each model as a production variant. Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each production variant and return the results of each model.

C.

Deploy each model to its own SageMaker endpoint Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each endpoint and return the results of each model.

D.

Deploy each model to its own SageMaker endpoint. Create three AWS Lambda functions. Configure each Lambda function to call a different endpoint and return the results. Configure three S3 event notifications to invoke the Lambda functions when new documents are created.

Question 70

An online reseller has a large, multi-column dataset with one column missing 30% of its data A Machine Learning Specialist believes that certain columns in the dataset could be used to reconstruct the missing data.

Which reconstruction approach should the Specialist use to preserve the integrity of the dataset?

Options:

A.

Listwise deletion

B.

Last observation carried forward

C.

Multiple imputation

D.

Mean substitution

Question 71

A media company is building a computer vision model to analyze images that are on social media. The model consists of CNNs that the company trained by using images that the company stores in Amazon S3. The company used an Amazon SageMaker training job in File mode with a single Amazon EC2 On-Demand Instance.

Every day, the company updates the model by using about 10,000 images that the company has collected in the last 24 hours. The company configures training with only one epoch. The company wants to speed up training and lower costs without the need to make any code changes.

Which solution will meet these requirements?

Options:

A.

Instead of File mode, configure the SageMaker training job to use Pipe mode. Ingest the data from a pipe.

B.

Instead Of File mode, configure the SageMaker training job to use FastFile mode with no Other changes.

C.

Instead Of On-Demand Instances, configure the SageMaker training job to use Spot Instances. Make no Other changes.

D.

Instead Of On-Demand Instances, configure the SageMaker training job to use Spot Instances. Implement model checkpoints.

Question 72

A Mobile Network Operator is building an analytics platform to analyze and optimize a company's operations using Amazon Athena and Amazon S3

The source systems send data in CSV format in real lime The Data Engineering team wants to transform the data to the Apache Parquet format before storing it on Amazon S3

Which solution takes the LEAST effort to implement?

Options:

A.

Ingest .CSV data using Apache Kafka Streams on Amazon EC2 instances and use Kafka Connect S3 to

serialize data as Parquet

B.

Ingest .CSV data from Amazon Kinesis Data Streams and use Amazon Glue to convert data into Parquet.

C.

Ingest .CSV data using Apache Spark Structured Streaming in an Amazon EMR cluster and use Apache

Spark to convert data into Parquet.

D.

Ingest .CSV data from Amazon Kinesis Data Streams and use Amazon Kinesis Data Firehose to convert

data into Parquet.

Question 73

A company has set up and deployed its machine learning (ML) model into production with an endpoint using Amazon SageMaker hosting services. The ML team has configured automatic scaling for its SageMaker instances to support workload changes. During testing, the team notices that additional instances are being launched before the new instances are ready. This behavior needs to change as soon as possible.

How can the ML team solve this issue?

Options:

A.

Decrease the cooldown period for the scale-in activity. Increase the configured maximum capacity of instances.

B.

Replace the current endpoint with a multi-model endpoint using SageMaker.

C.

Set up Amazon API Gateway and AWS Lambda to trigger the SageMaker inference endpoint.

D.

Increase the cooldown period for the scale-out activity.

Question 74

A data scientist has a dataset of machine part images stored in Amazon Elastic File System (Amazon EFS). The data scientist needs to use Amazon SageMaker to create and train an image classification machine learning model based on this dataset. Because of budget and time constraints, management wants the data scientist to create and train a model with the least number of steps and integration work required.

How should the data scientist meet these requirements?

Options:

A.

Mount the EFS file system to a SageMaker notebook and run a script that copies the data to an Amazon FSx for Lustre file system. Run the SageMaker training job with the FSx for Lustre file system as the data source.

B.

Launch a transient Amazon EMR cluster. Configure steps to mount the EFS file system and copy the data to an Amazon S3 bucket by using S3DistCp. Run the SageMaker training job with Amazon S3 as the data source.

C.

Mount the EFS file system to an Amazon EC2 instance and use the AWS CLI to copy the data to an Amazon S3 bucket. Run the SageMaker training job with Amazon S3 as the data source.

D.

Run a SageMaker training job with an EFS file system as the data source.

Question 75

A company's machine learning (ML) specialist is designing a scalable data storage solution for Amazon SageMaker. The company has an existing TensorFlow-based model that uses a train.py script. The model relies on static training data that is currently stored in TFRecord format.

What should the ML specialist do to provide the training data to SageMaker with the LEAST development overhead?

Options:

A.

Put the TFRecord data into an Amazon S3 bucket. Use AWS Glue or AWS Lambda to reformat the data to protobuf format and store the data in a second S3 bucket. Point the SageMaker training invocation to the second S3 bucket.

B.

Rewrite the train.py script to add a section that converts TFRecord data to protobuf format. Point the SageMaker training invocation to the local path of the data. Ingest the protobuf data instead of the TFRecord data.

C.

Use SageMaker script mode, and use train.py unchanged. Point the SageMaker training invocation to the local path of the data without reformatting the training data.

D.

Use SageMaker script mode, and use train.py unchanged. Put the TFRecord data into an Amazon S3 bucket. Point the SageMaker training invocation to the S3 bucket without reformatting the training data.

Question 76

A Data Scientist received a set of insurance records, each consisting of a record ID, the final outcome among 200 categories, and the date of the final outcome. Some partial information on claim contents is also provided, but only for a few of the 200 categories. For each outcome category, there are hundreds of records distributed over the past 3 years. The Data Scientist wants to predict how many claims to expect in each category from month to month, a few months in advance.

What type of machine learning model should be used?

Options:

A.

Classification month-to-month using supervised learning of the 200 categories based on claim contents.

B.

Reinforcement learning using claim IDs and timestamps where the agent will identify how many claims in each category to expect from month to month.

C.

Forecasting using claim IDs and timestamps to identify how many claims in each category to expect from month to month.

D.

Classification with supervised learning of the categories for which partial information on claim contents is provided, and forecasting using claim IDs and timestamps for all other categories.

Question 77

A Machine Learning Specialist is working with a media company to perform classification on popular articles from the company's website. The company is using random forests to classify how popular an article will be before it is published A sample of the data being used is below.

Given the dataset, the Specialist wants to convert the Day-Of_Week column to binary values.

What technique should be used to convert this column to binary values.

Question # 77

Options:

A.

Binarization

B.

One-hot encoding

C.

Tokenization

D.

Normalization transformation

Question 78

A data scientist is using the Amazon SageMaker Neural Topic Model (NTM) algorithm to build a model that recommends tags from blog posts. The raw blog post data is stored in an Amazon S3 bucket in JSON format. During model evaluation, the data scientist discovered that the model recommends certain stopwords such as "a," "an,” and "the" as tags to certain blog posts, along with a few rare words that are present only in certain blog entries. After a few iterations of tag review with the content team, the data scientist notices that the rare words are unusual but feasible. The data scientist also must ensure that the tag recommendations of the generated model do not include the stopwords.

What should the data scientist do to meet these requirements?

Options:

A.

Use the Amazon Comprehend entity recognition API operations. Remove the detected words from the blog post data. Replace the blog post data source in the S3 bucket.

B.

Run the SageMaker built-in principal component analysis (PCA) algorithm with the blog post data from the S3 bucket as the data source. Replace the blog post data in the S3 bucket with the results of the training job.

C.

Use the SageMaker built-in Object Detection algorithm instead of the NTM algorithm for the training job to process the blog post data.

D.

Remove the stop words from the blog post data by using the Count Vectorizer function in the scikit-learn library. Replace the blog post data in the S3 bucket with the results of the vectorizer.

Question 79

A data scientist receives a collection of insurance claim records. Each record includes a claim ID. the final outcome of the insurance claim, and the date of the final outcome.

The final outcome of each claim is a selection from among 200 outcome categories. Some claim records include only partial information. However, incomplete claim records include only 3 or 4 outcome ...gones from among the 200 available outcome categories. The collection includes hundreds of records for each outcome category. The records are from the previous 3 years.

The data scientist must create a solution to predict the number of claims that will be in each outcome category every month, several months in advance.

Which solution will meet these requirements?

Options:

A.

Perform classification every month by using supervised learning of the 20X3 outcome categories based on claim contents.

B.

Perform reinforcement learning by using claim IDs and dates Instruct the insurance agents who submit the claim records to estimate the expected number of claims in each outcome category every month

C.

Perform forecasting by using claim IDs and dates to identify the expected number ot claims in each outcome category every month.

D.

Perform classification by using supervised learning of the outcome categories for which partial information on claim contents is provided. Perform forecasting by using claim IDs and dates for all other outcome categories.

Question 80

A university wants to develop a targeted recruitment strategy to increase new student enrollment. A data scientist gathers information about the academic performance history of students. The data scientist wants to use the data to build student profiles. The university will use the profiles to direct resources to recruit students who are likely to enroll in the university.

Which combination of steps should the data scientist take to predict whether a particular student applicant is likely to enroll in the university? (Select TWO)

Options:

A.

Use Amazon SageMaker Ground Truth to sort the data into two groups named "enrolled" or "not enrolled."

B.

Use a forecasting algorithm to run predictions.

C.

Use a regression algorithm to run predictions.

D.

Use a classification algorithm to run predictions

E.

Use the built-in Amazon SageMaker k-means algorithm to cluster the data into two groups named "enrolled" or "not enrolled."

Question 81

A company uses a long short-term memory (LSTM) model to evaluate the risk factors of a particular energy

sector. The model reviews multi-page text documents to analyze each sentence of the text and categorize it as

either a potential risk or no risk. The model is not performing well, even though the Data Scientist has

experimented with many different network structures and tuned the corresponding hyperparameters.

Which approach will provide the MAXIMUM performance boost?

Options:

A.

Initialize the words by term frequency-inverse document frequency (TF-IDF) vectors pretrained on a large

collection of news articles related to the energy sector.

B.

Use gated recurrent units (GRUs) instead of LSTM and run the training process until the validation loss

stops decreasing.

C.

Reduce the learning rate and run the training process until the training loss stops decreasing.

D.

Initialize the words by word2vec embeddings pretrained on a large collection of news articles related to the

energy sector.

Question 82

A company uses camera images of the tops of items displayed on store shelves to determine which items

were removed and which ones still remain. After several hours of data labeling, the company has a total of

1,000 hand-labeled images covering 10 distinct items. The training results were poor.

Which machine learning approach fulfills the company’s long-term needs?

Options:

A.

Convert the images to grayscale and retrain the model

B.

Reduce the number of distinct items from 10 to 2, build the model, and iterate

C.

Attach different colored labels to each item, take the images again, and build the model

D.

Augment training data for each item using image variants like inversions and translations, build the model, and iterate.

Question 83

A logistics company needs a forecast model to predict next month's inventory requirements for a single item in 10 warehouses. A machine learning specialist uses Amazon Forecast to develop a forecast model from 3 years of monthly data. There is no missing data. The specialist selects the DeepAR+ algorithm to train a predictor. The predictor means absolute percentage error (MAPE) is much larger than the MAPE produced by the current human forecasters.

Which changes to the CreatePredictor API call could improve the MAPE? (Choose two.)

Options:

A.

Set PerformAutoML to true.

B.

Set ForecastHorizon to 4.

C.

Set ForecastFrequency to W for weekly.

D.

Set PerformHPO to true.

E.

Set FeaturizationMethodName to filling.

Question 84

A company needs to deploy a chatbot to answer common questions from customers. The chatbot must base its answers on company documentation.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Index company documents by using Amazon Kendra. Integrate the chatbot with Amazon Kendra by using the Amazon Kendra Query API operation to answer customer questions.

B.

Train a Bidirectional Attention Flow (BiDAF) network based on past customer questions and company documents. Deploy the model as a real-time Amazon SageMaker endpoint. Integrate the model with the chatbot by using the SageMaker Runtime InvokeEndpoint API operation to answer customer questions.

C.

Train an Amazon SageMaker BlazingText model based on past customer questions and company documents. Deploy the model as a real-time SageMaker endpoint. Integrate the model with the chatbot by using the SageMaker Runtime InvokeEndpoint API operation to answer customer questions.

D.

Index company documents by using Amazon OpenSearch Service. Integrate the chatbot with OpenSearch Service by using the OpenSearch Service k-nearest neighbors (k-NN) Query API operation to answer customer questions.

Question 85

A company ingests machine learning (ML) data from web advertising clicks into an Amazon S3 data lake. Click data is added to an Amazon Kinesis data stream by using the Kinesis Producer Library (KPL). The data is loaded into the S3 data lake from the data stream by using an Amazon Kinesis Data Firehose delivery stream. As the data volume increases, an ML specialist notices that the rate of data ingested into Amazon S3 is relatively constant. There also is an increasing backlog of data for Kinesis Data Streams and Kinesis Data Firehose to ingest.

Which next step is MOST likely to improve the data ingestion rate into Amazon S3?

Options:

A.

Increase the number of S3 prefixes for the delivery stream to write to.

B.

Decrease the retention period for the data stream.

C.

Increase the number of shards for the data stream.

D.

Add more consumers using the Kinesis Client Library (KCL).

Question 86

A retail chain has been ingesting purchasing records from its network of 20,000 stores to Amazon S3 using Amazon Kinesis Data Firehose To support training an improved machine learning model, training records will require new but simple transformations, and some attributes will be combined The model needs lo be retrained daily

Given the large number of stores and the legacy data ingestion, which change will require the LEAST amount of development effort?

Options:

A.

Require that the stores to switch to capturing their data locally on AWS Storage Gateway for loading into Amazon S3 then use AWS Glue to do the transformation

B.

Deploy an Amazon EMR cluster running Apache Spark with the transformation logic, and have the cluster run each day on the accumulating records in Amazon S3, outputting new/transformed records to Amazon S3

C.

Spin up a fleet of Amazon EC2 instances with the transformation logic, have them transform the data records accumulating on Amazon S3, and output the transformed records to Amazon S3.

D.

Insert an Amazon Kinesis Data Analytics stream downstream of the Kinesis Data Firehouse stream that transforms raw record attributes into simple transformed values using SQL.

Question 87

A retail company intends to use machine learning to categorize new products A labeled dataset of current products was provided to the Data Science team The dataset includes 1 200 products The labeled dataset has 15 features for each product such as title dimensions, weight, and price Each product is labeled as belonging to one of six categories such as books, games, electronics, and movies.

Which model should be used for categorizing new products using the provided dataset for training?

Options:

A.

An XGBoost model where the objective parameter is set to multi: softmax

B.

A deep convolutional neural network (CNN) with a softmax activation function for the last layer

C.

A regression forest where the number of trees is set equal to the number of product categories

D.

A DeepAR forecasting model based on a recurrent neural network (RNN)

Question 88

A company is setting up an Amazon SageMaker environment. The corporate data security policy does not allow communication over the internet.

How can the company enable the Amazon SageMaker service without enabling direct internet access to Amazon SageMaker notebook instances?

Options:

A.

Create a NAT gateway within the corporate VPC.

B.

Route Amazon SageMaker traffic through an on-premises network.

C.

Create Amazon SageMaker VPC interface endpoints within the corporate VPC.

D.

Create VPC peering with Amazon VPC hosting Amazon SageMaker.

Question 89

A manufacturing company uses machine learning (ML) models to detect quality issues. The models use images that are taken of the company's product at the end of each production step. The company has thousands of machines at the production site that generate one image per second on average.

The company ran a successful pilot with a single manufacturing machine. For the pilot, ML specialists used an industrial PC that ran AWS IoT Greengrass with a long-running AWS Lambda function that uploaded the images to Amazon S3. The uploaded images invoked a Lambda function that was written in Python to perform inference by using an Amazon SageMaker endpoint that ran a custom model. The inference results were forwarded back to a web service that was hosted at the production site to prevent faulty products from being shipped.

The company scaled the solution out to all manufacturing machines by installing similarly configured industrial PCs on each production machine. However, latency for predictions increased beyond acceptable limits. Analysis shows that the internet connection is at its capacity limit.

How can the company resolve this issue MOST cost-effectively?

Options:

A.

Set up a 10 Gbps AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images. Increase the size of the instances and the number of instances that are used by the SageMaker endpoint.

B.

Extend the long-running Lambda function that runs on AWS IoT Greengrass to compress the images and upload the compressed files to Amazon S3. Decompress the files by using a separate Lambda function that invokes the existing Lambda function to run the inference pipeline.

C.

Use auto scaling for SageMaker. Set up an AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images.

D.

Deploy the Lambda function and the ML models onto the AWS IoT Greengrass core that is running on the industrial PCs that are installed on each machine. Extend the long-running Lambda function that runs on AWS IoT Greengrass to invoke the Lambda function with the captured images and run the inference on the edge component that forwards the results directly to the web service.

Question 90

Example Corp has an annual sale event from October to December. The company has sequential sales data from the past 15 years and wants to use Amazon ML to predict the sales for this year's upcoming event. Which method should Example Corp use to split the data into a training dataset and evaluation dataset?

Options:

A.

Pre-split the data before uploading to Amazon S3

B.

Have Amazon ML split the data randomly.

C.

Have Amazon ML split the data sequentially.

D.

Perform custom cross-validation on the data

Question 91

A Machine Learning Specialist is creating a new natural language processing application that processes a dataset comprised of 1 million sentences The aim is to then run Word2Vec to generate embeddings of the sentences and enable different types of predictions -

Here is an example from the dataset

"The quck BROWN FOX jumps over the lazy dog "

Which of the following are the operations the Specialist needs to perform to correctly sanitize and prepare the data in a repeatable manner? (Select THREE)

Options:

A.

Perform part-of-speech tagging and keep the action verb and the nouns only

B.

Normalize all words by making the sentence lowercase

C.

Remove stop words using an English stopword dictionary.

D.

Correct the typography on "quck" to "quick."

E.

One-hot encode all words in the sentence

F.

Tokenize the sentence into words.

Question 92

A financial services company is building a robust serverless data lake on Amazon S3. The data lake should be flexible and meet the following requirements:

* Support querying old and new data on Amazon S3 through Amazon Athena and Amazon Redshift Spectrum.

* Support event-driven ETL pipelines.

* Provide a quick and easy way to understand metadata.

Which approach meets trfese requirements?

Options:

A.

Use an AWS Glue crawler to crawl S3 data, an AWS Lambda function to trigger an AWS Glue ETL job, and an AWS Glue Data catalog to search and discover metadata.

B.

Use an AWS Glue crawler to crawl S3 data, an AWS Lambda function to trigger an AWS Batch job, and an external Apache Hive metastore to search and discover metadata.

C.

Use an AWS Glue crawler to crawl S3 data, an Amazon CloudWatch alarm to trigger an AWS Batch job, and an AWS Glue Data Catalog to search and discover metadata.

D.

Use an AWS Glue crawler to crawl S3 data, an Amazon CloudWatch alarm to trigger an AWS Glue ETL job, and an external Apache Hive metastore to search and discover metadata.

Page: 1 / 31
Total 307 questions