New Year Sale Limited Time Flat 70% Discount offer - Ends in 0d 00h 00m 00s - Coupon code: 70spcl

Amazon Web Services AIF-C01 AWS Certified AI Practitioner Exam Exam Practice Test

Page: 1 / 29
Total 289 questions

AWS Certified AI Practitioner Exam Questions and Answers

Question 1

A company wants to improve the accuracy of the responses from a generative AI application. The application uses a foundation model (FM) on Amazon Bedrock.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Fine-tune the FM.

B.

Retrain the FM.

C.

Train a new FM.

D.

Use prompt engineering.

Question 2

Which THREE of the following principles of responsible AI are most critical to this scenario? (Choose 3)

* Explainability

* Fairness

* Privacy and security

* Robustness

* Safety

Question # 2

Options:

Question 3

A company is building an ML model. The company collected new data and analyzed the data by creating a correlation matrix, calculating statistics, and visualizing the data.

Which stage of the ML pipeline is the company currently in?

Options:

A.

Data pre-processing

B.

Feature engineering

C.

Exploratory data analysis

D.

Hyperparameter tuning

Question 4

A company has documents that are missing some words because of a database error. The company wants to build an ML model that can suggest potential words to fill in the missing text.

Which type of model meets this requirement?

Options:

A.

Topic modeling

B.

Clustering models

C.

Prescriptive ML models

D.

BERT-based models

Question 5

A retail company is tagging its product inventory. A tag is automatically assigned to each product based on the product description. The company created one product category by using a large language model (LLM) on Amazon Bedrock in few-shot learning mode.

The company collected a labeled dataset and wants to scale the solution to all product categories.

Which solution meets these requirements?

Options:

A.

Use prompt engineering with zero-shot learning.

B.

Use prompt engineering with prompt templates.

C.

Customize the model with continued pre-training.

D.

Customize the model with fine-tuning.

Question 6

A company wants to build an ML application.

Select and order the correct steps from the following list to develop a well-architected ML workload. Each step should be selected one time. (Select and order FOUR.)

• Deploy model

• Develop model

• Monitor model

• Define business goal and frame ML problem

Question # 6

Options:

Question 7

An AI practitioner trained a custom model on Amazon Bedrock by using a training dataset that contains confidential data. The AI practitioner wants to ensure that the custom model does not generate inference responses based on confidential data.

How should the AI practitioner prevent responses based on confidential data?

Options:

A.

Delete the custom model. Remove the confidential data from the training dataset. Retrain the custom model.

B.

Mask the confidential data in the inference responses by using dynamic data masking.

C.

Encrypt the confidential data in the inference responses by using Amazon SageMaker.

D.

Encrypt the confidential data in the custom model by using AWS Key Management Service (AWS KMS).

Question 8

An education provider is building a question and answer application that uses a generative AI model to explain complex concepts. The education provider wants to automatically change the style of the model response depending on who is asking the question. The education provider will give the model the age range of the user who has asked the question.

Which solution meets these requirements with the LEAST implementation effort?

Options:

A.

Fine-tune the model by using additional training data that is representative of the various age ranges that the application will support.

B.

Add a role description to the prompt context that instructs the model of the age range that the response should target.

C.

Use chain-of-thought reasoning to deduce the correct style and complexity for a response suitable for that user.

D.

Summarize the response text depending on the age of the user so that younger users receive shorter responses.

Question 9

A company is creating a model to label credit card transactions. The company has a large volume of sample transaction data to train the model. Most of the transaction data is unlabeled. The data does not contain confidential information. The company needs to obtain labeled sample data to fine-tune the model.

Options:

A.

Run batch inference jobs on the unlabeled data

B.

Run an Amazon SageMaker AI training job that uses the PyTorch Distributed library to label data

C.

Use an Amazon SageMaker Ground Truth labeling job with Amazon Mechanical Turk workers

D.

Use an optical character recognition model trained on labeled samples to label unlabeled samples

E.

Run an Amazon SageMaker AI labeling job

Question 10

A research group wants to test different generative AI models to create research papers. The research group has defined a prompt and needs a method to assess the models' output. The research group wants to use a team of scientists to perform the output assessments.

Which solution will meet these requirements?

Options:

A.

Use automatic evaluation on Amazon Personalize.

B.

Use content moderation on Amazon Rekognition.

C.

Use model evaluation on Amazon Bedrock.

D.

Use sentiment analysis on Amazon Comprehend.

Question 11

A large retailer receives thousands of customer support inquiries about products every day. The customer support inquiries need to be processed and responded to quickly. The company wants to implement Agents for Amazon Bedrock.

What are the key benefits of using Amazon Bedrock agents that could help this retailer?

Options:

A.

Generation of custom foundation models (FMs) to predict customer needs

B.

Automation of repetitive tasks and orchestration of complex workflows

C.

Automatically calling multiple foundation models (FMs) and consolidating the results

D.

Selecting the foundation model (FM) based on predefined criteria and metrics

Question 12

An ecommerce company wants to improve search engine recommendations by customizing the results for each user of the company's ecommerce platform. Which AWS service meets these requirements?

Options:

A.

Amazon Personalize

B.

Amazon Kendra

C.

Amazon Rekognition

D.

Amazon Transcribe

Question 13

A company wants to learn about generative AI applications in an experimental environment.

Which solution will meet this requirement MOST cost-effectively?

Options:

A.

Amazon Q Developer

B.

Amazon SageMaker JumpStart

C.

Amazon Bedrock PartyRock

D.

Amazon Q Business

Question 14

A digital devices company wants to predict customer demand for memory hardware. The company does not have coding experience or knowledge of ML algorithms and needs to develop a data-driven predictive model. The company needs to perform analysis on internal data and external data.

Which solution will meet these requirements?

Options:

A.

Store the data in Amazon S3. Create ML models and demand forecast predictions by using Amazon SageMaker built-in algorithms that use the data from Amazon S3.

B.

Import the data into Amazon SageMaker Data Wrangler. Create ML models and demand forecast predictions by using SageMaker built-in algorithms.

C.

Import the data into Amazon SageMaker Data Wrangler. Build ML models and demand forecast predictions by using an Amazon Personalize Trending-Now recipe.

D.

Import the data into Amazon SageMaker Canvas. Build ML models and demand forecast predictions by selecting the values in the data from SageMaker Canvas.

Question 15

A company is creating a model to label credit card transactions. The company has a large volume of sample transaction data to train the model. Most of the transaction data is unlabeled. The data does not contain confidential information. The company needs to obtain labeled sample data to fine-tune the model.

Options:

A.

Run batch inference jobs on the unlabeled data

B.

Run an Amazon SageMaker AI training job that uses the PyTorch Distributed library to label data

C.

Use an Amazon SageMaker Ground Truth labeling job with Amazon Mechanical Turk workers

D.

Use an optical character recognition model trained on labeled samples to label unlabeled samples

E.

Run an Amazon SageMaker AI labeling job

Question 16

Which AWS feature records details about ML instance data for governance and reporting?

Options:

A.

Amazon SageMaker Model Cards

B.

Amazon SageMaker Debugger

C.

Amazon SageMaker Model Monitor

D.

Amazon SageMaker JumpStart

Question 17

An AI company periodically evaluates its systems and processes with the help of independent software vendors (ISVs). The company needs to receive email message notifications when an ISV's compliance reports become available.

Which AWS service can the company use to meet this requirement?

Options:

A.

AWS Audit Manager

B.

AWS Artifact

C.

AWS Trusted Advisor

D.

AWS Data Exchange

Question 18

Which option is a benefit of using Amazon SageMaker Model Cards to document AI models?

Options:

A.

Providing a visually appealing summary of a model's capabilities.

B.

Standardizing information about a model's purpose, performance, and limitations.

C.

Reducing the overall computational requirements of a model.

D.

Physically storing models for archival purposes.

Question 19

Which option is an example of unsupervised learning?

Options:

A.

A model that groups customers based on their purchase history

B.

A model that classifies images as dogs or cats

C.

A model that predicts a house's price based on various features

D.

A model that learns to play chess by using trial and error

Question 20

An online media streaming company wants to give its customers the ability to perform natural language-based image search and filtering. The company needs a vector database that can help with similarity searches and nearest neighbor queries.

Which AWS service meets these requirements?

Options:

A.

Amazon Comprehend

B.

Amazon Personalize

C.

Amazon Polly

D.

Amazon OpenSearch Service

Question 21

A company plans to use a generative AI model to provide real-time service quotes to users.

Which criteria should the company use to select the correct model for this use case?

Options:

A.

Model size

B.

Training data quality

C.

General-purpose use and high-powered GPU availability

D.

Model latency and optimized inference speed

Question 22

A medical company wants to develop an AI application that can access structured patient records, extract relevant information, and generate concise summaries.

Which solution will meet these requirements?

Options:

A.

Use Amazon Comprehend Medical to extract relevant medical entities and relationships. Apply rule-based logic to structure and format summaries.

B.

Use Amazon Personalize to analyze patient engagement patterns. Integrate the output with a general purpose text summarization tool.

C.

Use Amazon Textract to convert scanned documents into digital text. Design a keyword extraction system to generate summaries.

D.

Implement Amazon Kendra to provide a searchable index for medical records. Use a template-based system to format summaries.

Question 23

Which component of Amazon Bedrock Studio can help secure the content that AI systems generate?

Options:

A.

Access controls

B.

Function calling

C.

Guardrails

D.

Knowledge bases

Question 24

A company is developing an ML model to make loan approvals. The company must implement a solution to detect bias in the model. The company must also be able to explain the model's predictions.

Which solution will meet these requirements?

Options:

A.

Amazon SageMaker Clarify

B.

Amazon SageMaker Data Wrangler

C.

Amazon SageMaker Model Cards

D.

AWS AI Service Cards

Question 25

Which metric measures the runtime efficiency of operating AI models?

Options:

A.

Customer satisfaction score (CSAT)

B.

Training time for each epoch

C.

Average response time

D.

Number of training instances

Question 26

A company manually reviews all submitted resumes in PDF format. As the company grows, the company expects the volume of resumes to exceed the company's review capacity. The company needs an automated system to convert the PDF resumes into plain text format for additional processing.

Which AWS service meets this requirement?

Options:

A.

Amazon Textract

B.

Amazon Personalize

C.

Amazon Lex

D.

Amazon Transcribe

Question 27

An ecommerce company is using a chatbot to automate the customer order submission process. The chatbot is powered by AI and Is available to customers directly from the company's website 24 hours a day, 7 days a week.

Which option is an AI system input vulnerability that the company needs to resolve before the chatbot is made available?

Options:

A.

Data leakage

B.

Prompt injection

C.

Large language model (LLM) hallucinations

D.

Concept drift

Question 28

A company is using custom models in Amazon Bedrock for a generative AI application. The company wants to use a company-managed encryption key to encrypt the model artifacts that the model customization jobs create. Which AWS service meets these requirements?

Options:

A.

AWS Key Management Service (AWS KMS)

B.

Amazon Inspector

C.

Amazon Macie

D.

AWS Secrets Manager

Question 29

An ecommerce company is developing a generative Al solution to create personalized product recommendations for its application users. The company wants to track how effectively the Al solution increases product sales and user engagement in the application.

Select the correct business metric from the following list for each business goal. Each business metric should be selected one time. (Select THREE.)

Average order value (AOV)

Click-through rate (CTR)

Retention rate

Question # 29

Options:

Question 30

A financial company is using ML to help with some of the company's tasks.

Which option is a use of generative AI models?

Options:

A.

Summarizing customer complaints

B.

Classifying customers based on product usage

C.

Segmenting customers based on type of investments

D.

Forecasting revenue for certain products

Question 31

A loan company is building a generative AI-based solution to offer new applicants discounts based on specific business criteria. The company wants to build and use an AI model responsibly to minimize bias that could negatively affect some customers.

Which actions should the company take to meet these requirements? (Select TWO.)

Options:

A.

Detect imbalances or disparities in the data.

B.

Ensure that the model runs frequently.

C.

Evaluate the model's behavior so that the company can provide transparency to stakeholders.

D.

Use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) technique to ensure that the model is 100% accurate.

E.

Ensure that the model's inference time is within the accepted limits.

Question 32

A hospital wants to use a generative AI solution with speech-to-text functionality to help improve employee skills in dictating clinical notes.

Options:

A.

Amazon Q Developer

B.

Amazon Polly

C.

Amazon Rekognition

D.

AWS HealthScribe

Question 33

A company wants to assess internet quality in remote areas of the world. The company needs to collect internet speed data and store the data in Amazon RDS. The company will analyze internet speed variation throughout each day. The company wants to create an AI model to predict potential internet disruptions.

Which type of data should the company collect for this task?

Options:

A.

Tabular data

B.

Text data

C.

Time series data

D.

Audio data

Question 34

A company wants to use AI to protect its application from threats. The AI solution needs to check if an IP address is from a suspicious source.

Options:

A.

Build a speech recognition system.

B.

Create a natural language processing (NLP) named entity recognition system.

C.

Develop an anomaly detection system.

D.

Create a fraud forecasting system.

Question 35

A company has implemented a generative AI solution to create personalized exercise routines for premium subscription users. The company offers free basic subscriptions and paid premium subscriptions. The company wants to evaluate the AI solution's return on investment over time.

Options:

A.

The average revenue per user (ARPU) over the past month

B.

The number of daily interactions by basic subscription users

C.

The conversion rate and the customer retention rate

D.

The decrease in the number of premium customer queries and issue volume

Question 36

An AI practitioner wants to use a foundation model (FM) to design a search application. The search application must handle queries that have text and images.

Which type of FM should the AI practitioner use to power the search application?

Options:

A.

Multi-modal embedding model

B.

Text embedding model

C.

Multi-modal generation model

D.

Image generation model

Question 37

A healthcare company wants to create a model to improve disease diagnostics by analyzing patient voices. The company has recorded hundreds of patient voices for this project. The company is currently filtering voice recordings according to duration and language.

Options:

A.

Data collection

B.

Data preprocessing

C.

Feature engineering

D.

Model training

Question 38

A company built a deep learning model for object detection and deployed the model to production.

Which AI process occurs when the model analyzes a new image to identify objects?

Options:

A.

Training

B.

Inference

C.

Model deployment

D.

Bias correction

Question 39

A financial company is developing a fraud detection system that flags potential fraud cases in credit card transactions. Employees will evaluate the flagged fraud cases. The company wants to minimize the amount of time the employees spend reviewing flagged fraud cases that are not actually fraudulent.

Which evaluation metric meets these requirements?

Options:

A.

Recall

B.

Accuracy

C.

Precision

D.

Lift chart

Question 40

A company is using a pre-trained large language model (LLM) to build a chatbot for product recommendations. The company needs the LLM outputs to be short and written in a specific language.

Which solution will align the LLM response quality with the company's expectations?

Options:

A.

Adjust the prompt.

B.

Choose an LLM of a different size.

C.

Increase the temperature.

D.

Increase the Top K value.

Question 41

A financial institution is building an AI solution to make loan approval decisions by using a foundation model (FM). For security and audit purposes, the company needs the AI solution's decisions to be explainable.

Which factor relates to the explainability of the AI solution's decisions?

Options:

A.

Model complexity

B.

Training time

C.

Number of hyperparameters

D.

Deployment time

Question 42

A company is implementing the Amazon Titan foundation model (FM) by using Amazon Bedrock. The company needs to supplement the model by using relevant data from the company's private data sources.

Which solution will meet this requirement?

Options:

A.

Use a different FM

B.

Choose a lower temperature value

C.

Create an Amazon Bedrock knowledge base

D.

Enable model invocation logging

Question 43

A company wants to control employee access to publicly available foundation models (FMs). Which solution meets these requirements?

Options:

A.

Analyze cost and usage reports in AWS Cost Explorer.

B.

Download AWS security and compliance documents from AWS Artifact.

C.

Configure Amazon SageMaker JumpStart to restrict discoverable FMs.

D.

Build a hybrid search solution by using Amazon OpenSearch Service.

Question 44

Which phase of the ML lifecycle determines compliance and regulatory requirements?

Options:

A.

Feature engineering

B.

Model training

C.

Data collection

D.

Business goal identification

Question 45

A company is deploying AI/ML models by using AWS services. The company wants to offer transparency into the models' decision-making processes and provide explanations for the model outputs.

Options:

A.

Amazon SageMaker Model Cards

B.

Amazon Rekognition

C.

Amazon Comprehend

D.

Amazon Lex

Question 46

A company wants to implement a generative AI solution to improve its marketing operations. The company wants to increase its revenue in the next 6 months.

Which approach will meet these requirements?

Options:

A.

Immediately start training a custom FM by using the company’s existing data.

B.

Conduct stakeholder interviews to refine use cases and set measurable goals.

C.

Implement a prebuilt AI assistant solution and measure its impact on customer satisfaction.

D.

Analyze industry AI implementations and replicate the most successful features.

Question 47

A company is exploring Amazon Nova models in Amazon Bedrock. The company needs a multimodal model that supports multiple languages.

Options:

A.

Nova Lite

B.

Nova Pro

C.

Nova Canvas

D.

Nova Reel

Question 48

A company that streams media is selecting an Amazon Nova foundation model (FM) to process documents and images. The company is comparing Nova Micro and Nova Lite. The company wants to minimize costs.

Options:

A.

Nova Micro uses transformer-based architectures. Nova Lite does not use transformer-based architectures.

B.

Nova Micro supports only text data. Nova Lite is optimized for numerical data.

C.

Nova Micro supports only text. Nova Lite supports images, videos, and text.

D.

Nova Micro runs only on CPUs. Nova Lite runs only on GPUs.

Question 49

An AI practitioner has a database of animal photos. The AI practitioner wants to automatically identify and categorize the animals in the photos without manual human effort.

Which strategy meets these requirements?

Options:

A.

Object detection

B.

Anomaly detection

C.

Named entity recognition

D.

Inpainting

Question 50

A company that uses multiple ML models wants to identify changes in original model quality so that the company can resolve any issues.

Which AWS service or feature meets these requirements?

Options:

A.

Amazon SageMaker JumpStart

B.

Amazon SageMaker HyperPod

C.

Amazon SageMaker Data Wrangler

D.

Amazon SageMaker Model Monitor

Question 51

An AI practitioner is developing a prompt for large language models (LLMs) in Amazon Bedrock. The AI practitioner must ensure that the prompt works across all Amazon Bedrock LLMs.

Which characteristic can differ across the LLMs?

Options:

A.

Maximum token count

B.

On-demand inference parameter support

C.

The ability to control model output randomness

D.

Compatibility with Amazon Bedrock Guardrails

Question 52

A company deployed an AI/ML solution to help customer service agents respond to frequently asked questions. The questions can change over time. The company wants to give customer service agents the ability to ask questions and receive automatically generated answers to common customer questions. Which strategy will meet these requirements MOST cost-effectively?

Options:

A.

Fine-tune the model regularly.

B.

Train the model by using context data.

C.

Pre-train and benchmark the model by using context data.

D.

Use Retrieval Augmented Generation (RAG) with prompt engineering techniques.

Question 53

A company wants to create an application to summarize meetings by using meeting audio recordings.

Select and order the correct steps from the following list to create the application. Each step should be selected one time or not at all. (Select and order THREE.)

• Convert meeting audio recordings to meeting text files by using Amazon Polly.

• Convert meeting audio recordings to meeting text files by using Amazon Transcribe.

• Store meeting audio recordings in an Amazon S3 bucket.

• Store meeting audio recordings in an Amazon Elastic Block Store (Amazon EBS) volume.

• Summarize meeting text files by using Amazon Bedrock.

• Summarize meeting text files by using Amazon Lex.

Question # 53

Options:

Question 54

How can companies use large language models (LLMs) securely on Amazon Bedrock?

Options:

A.

Design clear and specific prompts. Configure AWS Identity and Access Management (IAM) roles and policies by using least privilege access.

B.

Enable AWS Audit Manager for automatic model evaluation jobs.

C.

Enable Amazon Bedrock automatic model evaluation jobs.

D.

Use Amazon CloudWatch Logs to make models explainable and to monitor for bias.

Question 55

A publishing company built a Retrieval Augmented Generation (RAG) based solution to give its users the ability to interact with published content. New content is published daily. The company wants to provide a near real-time experience to users.

Which steps in the RAG pipeline should the company implement by using offline batch processing to meet these requirements? (Select TWO.)

Options:

A.

Generation of content embeddings

B.

Generation of embeddings for user queries

C.

Creation of the search index

D.

Retrieval of relevant content

E.

Response generation for the user

Question 56

A company needs an automated solution to group its customers into multiple categories. The company does not want to manually define the categories. Which ML technique should the company use?

Options:

A.

Classification

B.

Linear regression

C.

Logistic regression

D.

Clustering

Question 57

A hospital is developing an AI system to assist doctors in diagnosing diseases based on patient records and medical images. To comply with regulations, the sensitive patient data must not leave the country the data is located in.

Options:

A.

Data residency

B.

Data quality

C.

Data discoverability

D.

Data enrichment

Question 58

A company wants to create an application to summarize meetings by using meeting audio recordings.

Select and order the correct steps from the following list to create the application. Each step should be selected one time or not at all. (Select and order THREE.)

• Convert meeting audio recordings to meeting text files by using Amazon Polly.

• Convert meeting audio recordings to meeting text files by using Amazon Transcribe.

• Store meeting audio recordings in an Amazon S3 bucket.

• Store meeting audio recordings in an Amazon Elastic Block Store (Amazon EBS) volume.

• Summarize meeting text files by using Amazon Bedrock.

• Summarize meeting text files by using Amazon Lex.

Question # 58

Options:

Question 59

A company wants to identify harmful language in the comments section of social media posts by using an ML model. The company will not use labeled data to train the model. Which strategy should the company use to identify harmful language?

Options:

A.

Use Amazon Rekognition moderation.

B.

Use Amazon Comprehend toxicity detection.

C.

Use Amazon SageMaker AI built-in algorithms to train the model.

D.

Use Amazon Polly to monitor comments.

Question 60

A bank is fine-tuning a large language model (LLM) on Amazon Bedrock to assist customers with questions about their loans. The bank wants to ensure that the model does not reveal any private customer data.

Which solution meets these requirements?

Options:

A.

Use Amazon Bedrock Guardrails.

B.

Remove personally identifiable information (PII) from the customer data before fine-tuning the LLM.

C.

Increase the Top-K parameter of the LLM.

D.

Store customer data in Amazon S3. Encrypt the data before fine-tuning the LLM.

Question 61

A company stores millions of PDF documents in an Amazon S3 bucket. The company needs to extract the text from the PDFs, generate summaries of the text, and index the summaries for fast searching.

Which combination of AWS services will meet these requirements? (Select TWO.)

Options:

A.

Amazon Translate

B.

Amazon Bedrock

C.

Amazon Transcribe

D.

Amazon Polly

E.

Amazon Textract

Question 62

A company needs to apply numerical transformations to a set of images to transpose and rotate the images.

Options:

A.

Create a deep neural network by using the images as input.

B.

Create an AWS Lambda function to perform the transformations.

C.

Use an Amazon Bedrock large language model (LLM) with a high temperature.

D.

Use AWS Glue Data Quality to make corrections to each image.

Question 63

A company wants to use a pre-trained generative AI model to generate content for its marketing campaigns. The company needs to ensure that the generated content aligns with the company's brand voice and messaging requirements.

Which solution meets these requirements?

Options:

A.

Optimize the model's architecture and hyperparameters to improve the model's overall performance.

B.

Increase the model's complexity by adding more layers to the model's architecture.

C.

Create effective prompts that provide clear instructions and context to guide the model's generation.

D.

Select a large, diverse dataset to pre-train a new generative model.

Question 64

Which feature of Amazon OpenSearch Service gives companies the ability to build vector database applications?

Options:

A.

Integration with Amazon S3 for object storage

B.

Support for geospatial indexing and queries

C.

Scalable index management and nearest neighbor search capability

D.

Ability to perform real-time analysis on streaming data

Question 65

A company is using an Amazon Bedrock base model to summarize documents for an internal use case. The company trained a custom model to improve the summarization quality.

Which action must the company take to use the custom model through Amazon Bedrock?

Options:

A.

Purchase Provisioned Throughput for the custom model.

B.

Deploy the custom model in an Amazon SageMaker endpoint for real-time inference.

C.

Register the model with the Amazon SageMaker Model Registry.

D.

Grant access to the custom model in Amazon Bedrock.

Question 66

A company is building a contact center application and wants to gain insights from customer conversations. The company wants to analyze and extract key information from the audio of the customer calls.

Which solution meets these requirements?

Options:

A.

Build a conversational chatbot by using Amazon Lex.

B.

Transcribe call recordings by using Amazon Transcribe.

C.

Extract information from call recordings by using Amazon SageMaker Model Monitor.

D.

Create classification labels by using Amazon Comprehend.

Question 67

Which technique can a company use to lower bias and toxicity in generative AI applications during the post-processing ML lifecycle?

Options:

A.

Human-in-the-loop

B.

Data augmentation

C.

Feature engineering

D.

Adversarial training

Question 68

A company wants to extract key insights from large policy documents to increase employee efficiency.

Options:

A.

Regression

B.

Clustering

C.

Summarization

D.

Classification

Question 69

Sentiment analysis is a subset of which broader field of AI?

Options:

A.

Computer vision

B.

Robotics

C.

Natural language processing (NLP)

D.

Time series forecasting

Question 70

A company wants to keep its foundation model (FM) relevant by using the most recent data. The company wants to implement a model training strategy that includes regular updates to the FM.

Which solution meets these requirements?

Options:

A.

Batch learning

B.

Continuous pre-training

C.

Static training

D.

Latent training

Question 71

A company wants to improve the accuracy of the responses from a generative AI application. The application uses a foundation model (FM) on Amazon Bedrock.

Which solution meets these requirements MOST cost-effectively?

Options:

A.

Fine-tune the FM.

B.

Retrain the FM.

C.

Train a new FM.

D.

Use prompt engineering.

Question 72

A company wants to develop a solution that uses generative AI to create content for product advertisements, Including sample images and slogans.

Select the correct model type from the following list for each action. Each model type should be selected one time. (Select THREE.)

• Diffusion model

• Object detection model

• Transformer-based model

Question # 72

Options:

Question 73

A company wants to build a lead prioritization application for its employees to contact potential customers. The application must give employees the ability to view and adjust the weights assigned to different variables in the model based on domain knowledge and expertise.

Which ML model type meets these requirements?

Options:

A.

Logistic regression model

B.

Deep learning model built on principal components

C.

K-nearest neighbors (k-NN) model

D.

Neural network

Question 74

Which technique breaks a complex task into smaller subtasks that are sent sequentially to a large language model (LLM)?

Options:

A.

One-shot prompting

B.

Prompt chaining

C.

Tree of thoughts

D.

Retrieval Augmented Generation (RAG)

Question 75

An ecommerce company is deploying a chatbot. The chatbot will give users the ability to ask questions about the company's products and receive details on users' orders. The company must implement safeguards for the chatbot to filter harmful content from the input prompts and chatbot responses.

Which AWS feature or resource meets these requirements?

Options:

A.

Amazon Bedrock Guardrails

B.

Amazon Bedrock Agents

C.

Amazon Bedrock inference APIs

D.

Amazon Bedrock custom models

Question 76

A company is using Amazon SageMaker Studio notebooks to build and train ML models. The company stores the data in an Amazon S3 bucket. The company needs to manage the flow of data from Amazon S3 to SageMaker Studio notebooks.

Which solution will meet this requirement?

Options:

A.

Use Amazon Inspector to monitor SageMaker Studio.

B.

Use Amazon Macie to monitor SageMaker Studio.

C.

Configure SageMaker to use a VPC with an S3 endpoint.

D.

Configure SageMaker to use S3 Glacier Deep Archive.

Question 77

A company uses Amazon SageMaker for its ML pipeline in a production environment. The company has large input data sizes up to 1 GB and processing times up to 1 hour. The company needs near real-time latency.

Which SageMaker inference option meets these requirements?

Options:

A.

Real-time inference

B.

Serverless inference

C.

Asynchronous inference

D.

Batch transform

Question 78

A company wants to assess the costs that are associated with using a large language model (LLM) to generate inferences. The company wants to use Amazon Bedrock to build generative AI applications.

Which factor will drive the inference costs?

Options:

A.

Number of tokens consumed

B.

Temperature value

C.

Amount of data used to train the LLM

D.

Total training time

Question 79

HOTSPOT

A company is training its employees on how to structure prompts for foundation models.

Select the correct prompt engineering technique from the following list for each prompt template. Each prompt engineering technique should be selected onetime. (SelectTHREE.)

• Chain-of-thought reasoning

• Few-shot learning

• Zero-shot learning

Question # 79

Options:

Question 80

A company trained an ML model on Amazon SageMaker to predict customer credit risk. The model shows 90% recall on training data and 40% recall on unseen testing data.

Which conclusion can the company draw from these results?

Options:

A.

The model is overfitting on the training data.

B.

The model is underfitting on the training data.

C.

The model has insufficient training data.

D.

The model has insufficient testing data.

Question 81

A company is building a new generative AI chatbot. The chatbot uses an Amazon Bedrock foundation model (FM) to generate responses. During testing, the company notices that the chatbot is prone to prompt injection attacks.

What can the company do to secure the chatbot with the LEAST implementation effort?

Options:

A.

Fine-tune the FM to avoid harmful responses.

B.

Use Amazon Bedrock Guardrails content filters and denied topics.

C.

Change the FM to a more secure FM.

D.

Use chain-of-thought prompting to produce secure responses.

Question 82

A company wants to set up private access to Amazon Bedrock APIs from the company's AWS account. The company also wants to protect its data from internet exposure.

Options:

A.

Use Amazon CloudFront to restrict access to the company's private content

B.

Use AWS Glue to set up data encryption across the company's data catalog

C.

Use AWS Lake Formation to manage centralized data governance and cross-account data sharing

D.

Use AWS PrivateLink to configure a private connection between the company's VPC and Amazon Bedrock

Question 83

A company wants to label training datasets by using human feedback to fine-tune a foundation model (FM). The company does not want to develop labeling applications or manage a labeling workforce. Which AWS service or feature meets these requirements?

Options:

A.

Amazon SageMaker Data Wrangler

B.

Amazon SageMaker Ground Truth Plus

C.

Amazon Transcribe

D.

Amazon Macie

Question 84

A financial company uses a generative AI model to assign credit limits to new customers. The company wants to make the decision-making process of the model more transparent to its customers.

Options:

A.

Use a rule-based system instead of an ML model

B.

Apply explainable AI techniques to show customers which factors influenced the model's decision

C.

Develop an interactive UI for customers and provide clear technical explanations about the system

D.

Increase the accuracy of the model to reduce the need for transparency

Question 85

Sentiment analysis is a subset of which broader field of AI?

Options:

A.

Computer vision

B.

Robotics

C.

Natural language processing (NLP)

D.

Time series forecasting

Question 86

A company is developing a new model to predict the prices of specific items. The model performed well on the training dataset. When the company deployed the model to production, the model's performance decreased significantly.

What should the company do to mitigate this problem?

Options:

A.

Reduce the volume of data that is used in training.

B.

Add hyperparameters to the model.

C.

Increase the volume of data that is used in training.

D.

Increase the model training time.

Page: 1 / 29
Total 289 questions